# **CARDIOLOGY**

# **APPROVED**

By Zurab Azmaiparashvili at 2:38 am, Jan 24, 2009

# Ischemic Heart Disease/Coronary Artery Disease (IHD/CAD)

- Atherosclerosis is the major cause of CAD
- 1/3 of all deaths secondary to CAD

#### Risk Factors for CAD

| Major Modifiable      | Major Non-modifiable        | Minor                |
|-----------------------|-----------------------------|----------------------|
| Smoking               | Age                         | Obesity              |
| Diabetes Mellitus     | Gender                      | Sedentary Lifestyle  |
| Hypercholesterolemia/ | Family History of Premature | Hyperhomocysteinemia |
| Hyperlipidemia        | CAD                         |                      |
| Hypertension          |                             | Stress/depression    |
|                       |                             | OCP use              |
|                       |                             | Hypertriglyceridemia |
|                       |                             | "Type A" Personality |
|                       |                             | ↑ Lipoprotein (a)    |
|                       |                             | ↑ C-reactive Protein |
|                       |                             | Heavy Alcohol Intake |

- Cigarette Smoking →
  - 1. 2x incidence of CAD compared to non-smokers
  - 2. Cessation of smoking  $\rightarrow$  risk decreases to control values within 2-3 years
- Gender →
  - 1. Male/Female ratio 2:1 (all age groups)
  - 2. M/F ratio 1:1  $\rightarrow$  age > 70
  - 3. Males develop CAD at an earlier age than females
- Age  $\rightarrow$  > 45 in males and/or > 55 in females
- Premature CAD  $\rightarrow$  age < 55 in males and/or age < 65 in females
- OCP use  $\rightarrow$  women > 35 years of age who smoke
- $\uparrow$  C-reactive Protein  $\rightarrow$  2-3x incidence of MI in the absence of other risk factors
- **Obesity** → contributing mechanisms include:
  - 1. Insulin resistance/Type 2 DM
  - 2. ↑ total and/or LDL cholesterol
  - 3. ↓ **HDL** cholesterol
  - 4. ↑ **BP**
- DM → considered a "CAD-equivalent" (see below)
- \* Protective factors → ↑ estrogen (pre-menopause), moderate alcohol consumption, weight loss, exercise, HDL cholesterol > 60 mg/dL (cancels one risk factor)

### Hypercholesterolemia

By Zurab Azmaiparashvili at 2:39 am, Jan 24, 2009

- Fasting total cholesterol > 200 mg/dL, LDL cholesterol > 130 mg/dL and/or HDL cholesterol < 35 mg/dL
- May be hereditary (e.g. Type II hyperlipidemia) or acquired (more common)
- Acquired causes of hypercholesterolemia include:
  - 1. **Diet** rich in **fat** and/or **cholesterol**
  - 2. Smoking
  - 3. Excessive **alcohol** intake
  - 4. Obesity
  - 5. **DM**
  - 6. Nephrotic syndrome
  - 7. Liver disease
  - 8. Hypothyroidism
  - 9. **Drugs** (e.g. **OCPs**, thiazide/loop **diuretics**)
- Clinical features  $\rightarrow$  asymptomatic to xanthelasmas, tendon xanthomas and/or lipemia retinalis (more common in hereditary forms of disease)
- Screening for hyperlipidemia  $\rightarrow$  age > 35 in men and age > 45 in women (if normal, repeat in  $\sim$  5 years)
- Management →

| Patient Category     | Indication for lifestyle | Indication for   | Target LDL  |
|----------------------|--------------------------|------------------|-------------|
|                      | modification             | medical therapy  |             |
| 0-1 CAD risk factor  | LDL > 160  mg/dL         | LDL > 190  mg/dL | < 160 mg/dL |
| ≥ 2 CAD risk factors | LDL > 130  mg/dL         | LDL > 160  mg/dL | <130 mg/dL  |
| CAD or CAD           | LDL > 100  mg/dL         | LDL > 130  mg/dL | < 100 mg/dL |
| equivalents          | _                        | _                |             |

### \* CAD equivalents $\rightarrow$ DM, Peripheral artery, Carotid and/or Aortic disease

- \* Target LDL < 70 mg/dL →
  - 1. CAD + DM
  - 2. CAD + cigarette smoking
  - 3. **CAD** + **metabolic syndrome** (syndrome X)
  - 4. ACS or acute coronary syndrome (UA, NSTEMI and/or STEMI)

#### \* Lifestyle modification →

- 1. High-fiber diet low in fat and cholesterol
- 2. Exercise
- 3. Weight loss
- 4. Smoking cessation, ↓ alcohol intake
- No/minimal response to 3-month lifestyle modification  $\rightarrow$  lipid-lowering agents
- **Drug of choice** for ↑ **LDL** cholesterol → **statins** or HMG-CoA reductase inhibitors (e.g. simvastatin)
- Drug of choice for  $\uparrow$  triglycerides  $\rightarrow$  fibrates (e.g. gemfibrozil)
- Drug of choice for ↓ HDL cholesterol → niacin
- Failure to respond to statins → addition of second-line agents

<sup>\*</sup> Clues to hereditary hyperlipidemia → **young** age, ↑↑ **lipid levels**, ± family history of premature CAD

| Anti-hyperlipidemic Medications                                            |                                                                                                                            |                                                    |                                                                                                                                |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Drug Category                                                              | Mechanism of Action                                                                                                        | Net Effect                                         | Side Effects                                                                                                                   |
| HMG-CoA<br>Reductase Inhibitors<br>(e.g. simvastatin,<br>lovastatin, etc.) | Inhibition of rate-<br>limiting step in<br>cholesterol<br>biosynthesis                                                     | ↓↓ <b>LDL</b> , ↑ HDL<br>↓ triglycerides,          | GI distress, ↑ LFTs, myalgias, myositis with possible rhabdomyolysis/acute renal failure                                       |
| Niacin/nicotinic acid                                                      | <ul> <li>↓ hepatic VLDL         synthesis         ↑ lipoprotein lipase         activity         ↑ t-PA activity</li> </ul> | ↓ LDL, ↑↑ HDL     ↓ triglycerides     ↓ fibrinogen | Prostaglandin- mediated flushing/pruritus (self-limited; prevent with aspirin), hyperuricemia/gout, hyperglycemia, ↑ LFTs, PUD |
| Fibrates (e.g. gemfibrozil, fenofibrate, etc.)                             | ↑↑ lipoprotein lipase activity                                                                                             | ↓ LDL, ↑ HDL     ↓↓ triglycerides                  | GI distress, cholesterol gallstones, myalgias/myositis, hypokalemia, ↑ LFTs                                                    |
| Bile-acid binding resins (e.g. cholestyramine, colestipol, colesevelam)    | <pre></pre>                                                                                                                | ↓ LDL<br>↑ triglycerides                           | GI distress, ↓  absorption of concomitantly administered drugs (e.g. digoxin, warfarin, tetracycline)                          |
| Cholesterol absorption inhibitors (e.g. ezetimibe)                         | ↓ GI cholesterol absorption                                                                                                | ↓ LDL                                              | GI distress                                                                                                                    |

<sup>\*</sup> Most commonly used second-line medication for ↑ LDL (in conjugation with statins) → ezetimibe

<sup>\*</sup> Try to **avoid** combining **statins** with **fibrates**  $\rightarrow \uparrow \uparrow$  risk of **rhabdomyolysis** (watch for extremely elevated CK, oliguria/anuria, dark-urine, etc.)

<sup>\*</sup> Do not use bile-acid sequestrants in case of hypertriglyceridemia

<sup>\*</sup> Note  $\rightarrow$  patients with **hypertriglyceridemia** present with **eruptive xanthomas** and/or attacks of **acute pancreatitis** with **no**/minimal risk of **CAD** (e.g. Type I and V hyperlipidemias)

# Differential Diagnosis of Chest Pain

| Angina                        | Chart "tightness" "nyassuna" disaamfart                                          |
|-------------------------------|----------------------------------------------------------------------------------|
| Angina                        | Chest "tightness", "pressure", discomfort Substernal location                    |
|                               |                                                                                  |
|                               | Radiation to the neck, jaw, left arm  Exertional                                 |
|                               |                                                                                  |
|                               | Relieved by <b>rest</b> and/or <b>nitroglycerin</b> Duration <b>5-15 minutes</b> |
| M                             |                                                                                  |
| Myocardial Infarction         | Similar to angina, but:                                                          |
|                               | 1. more severe                                                                   |
|                               | 2. longer duration (>20-30 minutes)                                              |
|                               | 3. <b>not relieved</b> by rest/nitroglycerin                                     |
|                               | 4. accompanied by <b>nausea</b> , <b>vomiting</b> ,                              |
|                               | diaphoresis and/or shortness of                                                  |
| A 4. C4 .                     | breath                                                                           |
| Aortic Stenosis               | Similar to angina, but accompanied by                                            |
|                               | characteristic murmur of aortic stenosis                                         |
| <b>Aortic Dissection</b>      | Sudden onset                                                                     |
|                               | Sharp "tearing" pain                                                             |
|                               | Radiation to the back                                                            |
|                               | Unequal arm BP/pulses                                                            |
|                               | Possible murmur of aortic regurgitation                                          |
| <b>Acute Pericarditis</b>     | Sharp "pleuritic" pain (worse with                                               |
|                               | inspiration)                                                                     |
|                               | Pain worse when lying down and/or                                                |
|                               | swallowing                                                                       |
|                               | Pain improves with leaning forward                                               |
| D. I. II.                     | Possible pericardial friction rub                                                |
| Pulmonary Embolism            | Sudden onset                                                                     |
|                               | "Pleuritic" chest pain                                                           |
|                               | Accompanied by tachycardia,                                                      |
| D.1. III                      | tachypnea/dyspnea, cough/hemoptysis                                              |
| <b>Pulmonary Hypertension</b> | Similar to angina, but accompanied by loud                                       |
|                               | S2 and/or symptoms/signs of right ventricular                                    |
|                               | failure                                                                          |
| Pneumonia                     | Sharp, "pleuritic" chest pain accompanied                                        |
|                               | by <b>cough</b> , ↑ <b>fever</b> , dyspnea and/or <b>signs</b> of                |
| D 41                          | consolidation                                                                    |
| Pneumothorax                  | Sudden onset                                                                     |
|                               | Sharp, "pleuritc" chest pain and/or dyspnea                                      |
|                               | accompanied by hyperresonance to                                                 |
|                               | percussion                                                                       |
| Costochondritis               | Sharp chest pain worse with movement                                             |
| CEDD                          | Reproduced with palpation                                                        |
| GERD                          | "Burning" sensation                                                              |
|                               | Worse when lying down, leaning forward                                           |
|                               | and/or wearing tight clothing                                                    |
|                               | Worsens with nitroglycerin                                                       |
|                               | Improves with antacids                                                           |
| Diffuse Esophageal Spasm      | Similar to angina, but with <b>sudden</b> onset;                                 |
|                               | usually brought on by drinking cold beverages                                    |

\* Routine diagnostic tests to order in patients with chest pain and/or shortness of breath

### → EKG and Chest X-ray

## **APPROVED**

Chronic Stable Angina

- > 60% atherosclerotic narrowing of the coronary arteries → adequate resting perfusion + inability to increase blood flow with ↑ demand
- > 90-95% narrowing → resting ischemia
- Definition → long-lasting chest pain of the same frequency and intensity, reproducible by the same amount of exertion
- Clinical features →
  - 1. Chest pain precipitated by physical and/or emotional stress
  - 2. Pain described as "tightness", "pressure" and/or "squeezing" sensation
  - 3. **Substernal** location (may be precordial, epigastric, etc.)
  - 4. **Radiation** to the **neck**, **lower jaw**, **left shoulder/arm** (right-sided radiation also a possibility)
  - 5. Possible nausea, vomiting, dyspnea and/or diaphoresis (more common with MI)
  - 6. **Brief duration** (<15-20 minutes)
  - 7. **Relieved** by **rest** and/or **nitroglycerin**
  - 8. New-onset **S4** heart sound (diastolic dysfunction) and/or **holosystolic murmur** of **mitral regurgitation** (papillary muscle dysfunction)
- Common precipitants of angina pectoris →
  - 1. Physical exertion
  - 2. Emotional upset
  - 3. Walking in cold weather
  - 4. Heavy meal
  - 5. Early morning hours
- EKG during the episode of pain → ST-segment depression and/or T wave inversion (indicating subendocardial ischemia)
- \* Isolated dyspnea and/or fatigue may be a manifestation of ischemia, especially in women, elderly and/or patients with DM
- \* Silent ischemia  $\rightarrow$  pretty common in patients with known stable angina (~ 5:1 ratio); also common in the elderly, patients with DM and/or post-MI; asymptomatic + ST segment depression on EKG
  - Best initial diagnostic test → resting (baseline) EKG to rule out ongoing ischemia and/or presence of EKG changes that may preclude performing a standard exercise stress testing
- \* Not for Test Qs → all patients should undergo a **2-D echocardiography** to assess **left ventricular function**, which is the **most important prognostic** indicator
  - Low probability of stable angina (e.g. young, healthy female with atypical chest pain)

    → look for another etiology of chest pain; do not order stress testing (↑ false-positive results)
  - High probability of stable angina (e.g. older male, with multiple CAD risk factors presenting with typical chest pain) → determine disease severity/need for revascularization and/or proceed to medical treatment; do not order stress testing for diagnostic purposes (↑ false-negative results)

- Intermediate probability of stable angina → proceed to stress testing
- \* You may still order stress testing in patients with high-probability angina for risk-stratification but not diagnostic purposes

- Indications for stress testing:
  - 1. Evaluation of **chest pain**
  - 2. Assessment of treatment efficacy
  - 3. Risk stratification/need for revascularization
  - 4. Assessment of myocardial viability
- Contraindications to stress testing:
  - 1. **Acute MI** (first 2 days)
  - 2. Unstable angina
  - 3. Uncontrolled **hypertension**
  - 4. Uncontrolled tachy- and/or bradyarrhythmias
  - 5. Aortic dissection
  - 6. Severe aortic stenosis
  - 7. Uncontrolled heart failure
  - 8. **Hypertrophic** cardiomyopathy
  - 9. Acute myocarditis, pericarditis and/or endocarditis
- Positive findings →
  - 1. ST-segment depression (horizontal or down-sloping)  $\geq 1$  mm
  - 2. Significant hypotension
  - 3. Chest pain
- Patient **able** to **exercise** + **normal** baseline **EKG** → **regular exercise** stress testing (e.g. treadmill, bicycle)
- Patient **able** to **exercise** + **uninterpretable EKG** → exercise stress testing with **thalium imaging** (nuclear stress testing)
- Patient **able** to **exercise** + **uninterpretable EKG** + **obesity** and/or **female** gender → exercise stress testing with **Tc-99 imaging** (**sestamibi** scan)
- \* Uninterpretable EKG → LBBB, left ventricular hypertrophy, baseline ST depression > 1 mm, pacemaker, digoxin therapy, Wolff-Parkinson-White syndrome
  - Patient unable to exercise → pharmacologic stress testing:
    - 1. **Persantine** (dipyridamole) thallium (most common test Q answer)
    - 2. Adenosine thallium
    - 3. **Dobutamine** with **echo** (patients with **asthma**, **COPD**)
- \* Nuclear imaging → reversible "cold spots" indicate areas of ischemia/↓ perfusion; persistent changes previous MI
- \* ECHO → decreased/abnormal wall motion indicates areas of ischemia/\perfusion
  - **High-risk** findings during **exercise stress** testing:
    - 1. ST-segment depression > 2 mm
    - 2. **ST**-segment **depression** > **6 min.** in duration
    - 3. Any degree of ST-segment elevation
    - 4. Significant hypotension
    - 5. Significantly decreased LV contractility

- Most accurate diagnostic test → coronary angiography
- \* Indications for coronary angiography:
  - 1. **High-risk** patient (see above)
  - 2. Contraindications to stress testing
  - 3. Stable angina refractory to medical therapy
  - 4. STEMI
  - 5. High-risk UA/NSTEMI
  - 6. Non-diagnostic stress testing
  - 7. **Post-infarction** chest pain

- Management:
  - 1. Short-acting nitrates (sublingual nitroglycerin) for acute relief of chest pain
  - 2.  $\beta$ -blockers  $\rightarrow$  first-line agents for chronic management of stable angina
  - 3. No/minimal response to  $\beta$ -blockers  $\rightarrow$  add long-acting nitrates (e.g. isosorbide dinitrate)
  - 4. Avoid short-acting Ca-channel blockers → ↑ mortality
  - 5. Daily **aspirin**  $\pm$  statins (see above)
  - 6. Correction of CAD risk factors
  - 7. No/minimal response to medical therapy and/or high-risk patient → consider coronary revascularization (PCI vs. CABG)
- \* Indications for CABG (coronary artery bypass grafting) >
  - 1. **Left main coronary** artery disease
  - 2. Three-vessel disease
  - 3. Proximal left anterior descending artery involvement
  - 4. **Diffuse** disease (unable to perform PTCA)
  - 5. CAD + DM
  - 6. CAD +  $\downarrow$  LV function
- \* PCI (percutaneous coronary intervention)  $\rightarrow$  PTCA (percutaneous transluminal coronary angioplasty)  $\pm$  stent placement  $\rightarrow$ 
  - 1. **Shorter** hospital stay
  - 2. Lower cost
  - 3. ↑ **need** for **repeat** revascularization
  - 4. Complications → intimal **dissection** (requiring urgent CABG), **restenosis** (major complication; 30-40% at 6 months; lower incidence with stent placement)
- \* Patients undergoing PTCA + stent placement should take aspirin (indefinitely), clopidogrel (at least 1 month) and GP IIb/IIIa inhibitors (before procedure) -> see below

### Prinzmetal's Angina (Variant Angina; Coronary Artery Spasm)

• **Females** > Males

## **APPROVED**

• Young age ( $\sim 20$ -40 years of age)

By Zurab Azmaiparashvili at 2:40 am, Jan 24, 2009

- Risk factors  $\rightarrow$  cigarette **smoking**, **cocaine** abuse
- Associated conditions  $\rightarrow$  migraine headaches, Raynaud's phenomenon
- Clinical features → **nocturnal** and/or **early morning** chest **pain** (usually awakening the patient from sleep) + **ST**-segment **elevation** on **EKG** (as opposed to MI, EKG returns to normal in patients with variant angina)
- Stress testing and/or coronary angiography → **normal** (although coronary spasm most commonly occurs at sites of atherosclerosis)
- Most accurate diagnostic test → angiographic demonstration of coronary spasm induced by intracoronary injection of ergonovine (ergonovine challenge test) and/or acetylcholine
- Management  $\rightarrow$  Ca-channel blockers (drugs of choice)  $\pm$  long-acting nitrates

### Acute Coronary Syndrome (ACS)

- ACS consists of UA (unstable angina), NSTEMI (non-ST elevation myocardial infarction) and STEMI (ST elevation myocardial infarction)
- Most cases of **STEMI** progress to **QwMI** (Q-wave myocardial infarction)
- Most cases of **NSTEMI** progress to **NQMI** (non-Q wave myocardial infarction)
- Pathophysiology: atherosclerotic plaque disruption (rupture, fissuring, etc.) with superimposed thrombosis resulting in complete (STEMI) or non-complete/flowlimiting (UA/NSTEMI) coronary artery occlusion

#### **UA/NSTEMI**

- Definition of unstable angina →
  - 1. **new-onset** angina
  - 2. angina occurring at rest
  - 3. "crescendo" angina († frequency, duration and/or severity)
  - 4. post-MI angina
  - 5. **post-CABG** angina
  - 6. post-angiography/PCI angina
- NSTEMI is similar to UA with regard to pathophysiology and/or clinical features
- **Differentiation** between UA and NSTEMI → order **cardiac troponins** (Troponin T or Troponin I) and/or **CK-MB** determination, which should be **normal** with **UA** and **elevated** with **NSTEMI**
- Best initial diagnostic test in suspected UA/NSTEMI → EKG showing normal tracing or dynamic changes (e.g. ST segment depression and/or T wave inversion)
- Best next step (even if EKG is normal) → serial measurements of cardiac enzymes (on admission + every 8 hours)

- All patients with UA/NSTEMI should receive →
  - 1. **Aspirin**  $\pm$  clopidogrel
  - 2. **B-blockers**
  - 3. Nitroglycerin
  - 4. Supplemental oxygen
- By Zurab Azmaiparashvili at 2:40 am, Jan 24, 2009
- 5. Morphine (if pain non-responsive to nitroglycerin)
- 6. Heparin
- 7. Statins
- **High-risk** patients should also be started on **GP IIb/IIIa inhibitors** (e.g. abciximab, tirofiban, eptifibitide)

### \* High-Risk UA/NSTEMI →

- 1. > 20 min. ongoing rest pain
- 2. recurrent ischemic chest pain
- 3. **J BP**
- 4. ↑ cardiac enzymes
- 5. pulmonary edema
- 6.  $\downarrow$  LV function (EF < 40%)
- 7. **Dynamic EKG** changes
- 8. presence of **DM** and/or kidney failure
- 9. Severe **arrhythmia** (e.g. ventricular tachycardia)
- 10. Age > 75
- **High-risk** patients should undergo **early** (within **48 hours**) **coronary angiography** with possible **revascularization** (PTCA or CABG)
- Stabilized, low-/intermediate-risk patients should undergo pre-discharge evaluation of LV function and stress testing:
  - 1. EF < 40% and/or high-risk findings on stress testing → proceed to coronary angiography with possible revascularization
- \* DO NOT use thrombolytic agents in patients with UA/NSTEMI → ↑ mortality
- \* DO NOT FORGET to give heparin to patients with UA/NSTEMI (unless contraindicated) → continuous intravenous UFH or subcutaneous LMWH
- \* Contraindications to  $\beta$ -blockers  $\rightarrow$  substitute with verapamil or diltiazem (non-dihydropyridine Ca-channel blockers)
- \* Add ACE-inhibitors in patients with \( \precedet LV \) function
  - Chronic management → similar to chronic stable angina
  - 50% of cases of UA progress to MI without treatment

#### **STEMI**

By Zurab Azmaiparashvili at 2:41 am, Jan 24, 2009

- History → severe, prolonged (>20 min) retrosternal chest pain with radiation to the neck, lower jaw, left shoulder/arm + nausea/vomiting, dyspnea and/or diaphoresis; extreme fear/apprehension common
- Physical Exam → tachycardia (possible bradycardia with inferior wall/right ventricular infarctions), hypertension/hypotension, new-onset S4 heart sound and/or murmur of mitral regurgitation
- Best initial diagnostic test → EKG showing ≥ 1 mm ST segment elevation in ≥ 2 contiguous leads with ST segment depression in reciprocal leads and/or new-onset LBBB
- Confirmation of diagnosis → ↑ cardiac troponins and/or CK-MB detected during serial determinations of cardiac enzymes (may be normal at presentation)
- Evolution of EKG changes:
  - 1. **hyperacute** T waves
  - 2. ST segment elevation
  - 3. **development** of **Q** waves/**T** wave **inversion**
  - 4. **normalization** of **ST** segment
  - 5. **normalization** of T waves

#### \* Cardiac Enzymes:

- 1. CK-MB  $\rightarrow$  peak at 12-24 hours post-MI; detectable for  $\sim$  3 days
- 2. Troponins  $\rightarrow$  detectable for  $\sim$  7-10 days; most specific MI marker
- 3. Myoglobin → appears first (~ 30 min post-MI); negative result does not rule out MI (lacks specificity)
- \* Suspected Re-infarction → order CK-MB
- \* Suspected recent infarction → order cardiac troponins
  - Localization of STEMI:
    - 1. Inferior wall  $\rightarrow$  II, III and aVF
    - 2. Lateral wall  $\rightarrow$  I, aVL and V<sub>5</sub> V<sub>6</sub>
    - 3. Anterior wall  $\rightarrow$  V<sub>3</sub> V<sub>4</sub>
    - 4. Septal  $\rightarrow$  V<sub>1</sub> V<sub>2</sub>
    - 5. Posterior wall  $\rightarrow$  reciprocal changes in  $V_1 V_2$  (e.g. ST segment depression, peaked T waves)
  - Vessels affected depending on MI location:
    - 1. **Right coronary** artery → **right ventricle**, **inferior** wall, **posterior** wall, **SA** and/or **AV** nodes
    - 2. Left anterior descending artery  $\rightarrow$  anterior wall, septal wall
    - 3. **Left circumflex artery** → **lateral** wall (possible inferior/posterior walls)

<sup>\*</sup> Remember  $\rightarrow$  most individuals have **right coronary dominance** (artery that gives rise to posterior descending artery supplying the posterior/inferior walls of LV)

Inferior wall STEMI



- Patients with **STEMI** should be started on:
  - 1. Supplemental oxygen
  - 2. Aspirin
  - 3. Nitroglycerin
  - 4. β-blockers
  - 5. Morphine
  - 6. Heparin
  - 7. Statins
- Consider **ACE inhibitors** (in the absence on contraindications and/or hypotension), especially if **EF** < 40%, pulmonary **edema** and/or **anterior MI**
- Add clopidogrel if the patients is to undergo reperfusion therapy (fibrinolysis vs. PCI)
- Add GP IIb/IIIa inhibitors before undergoing PCI

## \* DO NOT give clopidogrel if CABG is anticipated

- \* Avoid using Ca-channel blockers, especially short-acting nifedipine
  - < 12 hours since onset of chest pain → consider reperfusion therapy
  - PCI better than fibrinolysis if performed within 90 minutes of patient encounter
  - Anticipated delay  $> 90 \text{ min } \rightarrow \text{ proceed to fibrinolysis (unless contraindicated)}$
  - Best results with fibrinolysis if performed within 30 minutes of patient encounter

- Indications for thrombolysis (fibrinolysis) >
  - 1. Chest pain > 30 min in duration *plus*
  - 2. < 12 hours since onset *plus*
- APPROVED
- By Zurab Azmaiparashvili at 2:41 am, Jan 24, 2009
- 3. > 1 mm ST segment elevation and/or new-onset LBBB
- Indication for PCI →
  - 1. **as above** plus < 90 min "door-to-balloon" time or
  - 2. contraindications to fibrinolysis
- \* Rescue PCI  $\rightarrow$  continued ischemia after thrombolytic therapy (or cardiogenic shock, pulmonary edema and/or EF < 40% post-fibrinolysis)
- \* No response to PCI  $\rightarrow$  proceed to CABG (also consider CABG in cases of mechanical complications of MI requiring surgical intervention)

| <b>Contraindications to Thrombolysis</b>   |                                       |
|--------------------------------------------|---------------------------------------|
| Absolute Contraindications                 | Relative Contraindications            |
| Active bleeding, excluding menses          | Uncontrolled hypertension (SBP > 180  |
| Bleeding diathesis                         | mmHg and/or DBP > 110 mmHg)           |
| Suspected aortic dissection                | Ischemic stroke > 3months             |
| Known cerebral neoplasm                    | Traumatic/prolonged (>10 min) CPR     |
| Known cerebral vascular lesion             | Major surgery within 3 weeks          |
| Previous intracranial hemorrhage           | Internal bleeding within 2-4 weeks    |
| Ischemic stroke within 3 months, excluding | Non-compressible vascular punctures   |
| acute ischemic stroke < 3 hours duration   | Active PUD                            |
| Significant head/facial trauma within 3    | Pregnancy                             |
| months                                     | Prior exposure/allergic reaction (for |
| Proliferative retinopathy                  | streptokinase/anistreplase only)      |

- Chronic Management (drugs patients should be taking at discharge and thereafter) >
  - 1. Aspirin
  - 2. β-blockers
  - 3. Statins
  - 4. ACE-inhibitors, in patients with anterior MI and/or EF < 40%
  - 5. Short-acting nitrates for acute relief
  - 6. Clopidogrel (at least 1 month post-fibrinolysis; ~ 12 months post-PCI)
  - 7. Warfarin for large, anterior  $MI \pm intramural thrombus (3-6 months)$
- \* Everyone needs **modification** of **risk factors** (e.g. control of hypertension, smoking cessation, regular exercise, etc.)
- \* Drug that have shown to  $\downarrow$  mortality include  $\rightarrow$  aspirin,  $\beta$ -blockers, ACE-inhibitors, statins and warfarin
- \* EF < 30% 1 month post-MI → consider implantable cardioverter-defibrillator
- \* Diltiazem has shown to \upsilon mortality in patients with NQMI
  - Perform sub-maximal exercise and/or nuclear stress testing 4-6 days post-MI
  - Perform standard stress testing 3-6 weeks post-MI
  - Stress testing **positive for ischemia** → proceed to **angiography**

# Selected Complications of MI

# **APPROVED**

| Complication                 | Key Features                                   | Management                                       |
|------------------------------|------------------------------------------------|--------------------------------------------------|
| Right Ventricular Infarction | ↑ JVP, hypotension, absence of pulmonary edema | Step 1 → IV fluids + stop nitroglycerin infusion |
|                              | Associated with                                | Step $2 \rightarrow$ <b>dobutamine</b> , if      |
|                              | inferior/posterior MI                          | above measures fail                              |
|                              | ST segment elevation in V <sub>4</sub> R       | above measures ran                               |
|                              | Echo: RV hypokinesis                           |                                                  |
|                              | Heart Catheterization: right-                  |                                                  |
|                              | sided pressures + \( \) PCWP                   |                                                  |
| Ventricular Free Wall        | Females > Males                                | Pericardiocentesis (if                           |
| Rupture                      | 3-5 days post-MI                               | tamponade) + emergent                            |
| Tuptuit                      | Symptoms/signs of                              | surgical repair                                  |
|                              | pericardial tamponade (see                     | surgicul repuir                                  |
|                              | below)                                         |                                                  |
|                              | <b>Electromechanical</b>                       |                                                  |
|                              | <b>dissociation</b> ± sudden death             |                                                  |
|                              | Echo: large pericardial                        |                                                  |
|                              | effusion                                       |                                                  |
|                              | Heart Catheterization:                         |                                                  |
|                              | equalization of diastolic                      |                                                  |
|                              | pressures                                      |                                                  |
| Papillary Muscle Rupture     | 3-5 days post-MI                               | Emergent surgical repair                         |
|                              | Associated with inferior MI                    | (consider vasodilators and/or                    |
|                              | Sudden onset of hypotension                    | IABP as temporary measures                       |
|                              | and pulmonary edema                            | before surgery)                                  |
|                              | Pansystolic murmur of                          | defore surgery)                                  |
|                              | mitral regurgitation                           |                                                  |
|                              | Echo: severe mitral                            |                                                  |
|                              | insufficiency                                  |                                                  |
|                              | Heart Catheterization:                         |                                                  |
|                              | prominent V wave                               |                                                  |
| Ventricular Septal Rupture   | 3-5 days post-MI                               | Emergent surgical repair                         |
| 1 1                          | Sudden onset of hypotension                    | (consider vasodilators and/or                    |
|                              | and pulmonary edema                            | <b>IABP</b> as temporary measures                |
|                              | Harsh, pansystolic murmur +                    | before surgery)                                  |
|                              | palpable thrill                                |                                                  |
|                              | Echo: septal defect                            |                                                  |
|                              | Heart Catheterization: <b>Step-</b>            |                                                  |
|                              | up in O2 saturation at RV                      |                                                  |
|                              | (from RA to PA)                                |                                                  |
| Acute Pericarditis           | "Pleuritic" chest pain                         | Aspirin (or other NSAIDs) ±                      |
|                              | (radiating to the <b>trapezius</b> )           | steroids                                         |
|                              | ± friction rub                                 | Consider <b>stopping</b>                         |
|                              | EKG: diffuse ST segment                        | anticoagulation (may                             |
|                              | elevation ± PR segment                         | progress to hemorrhagic                          |
|                              | depression                                     | pericarditis)                                    |
| Dressler's Syndrome          | Possibly autoimmune                            | Aspirin (or other NSAIDs) ±                      |
| •                            | Several weeks post-MI                          | steroids                                         |
|                              | Symptoms/signs of                              |                                                  |
|                              | pericarditis + ↑ ESR                           |                                                  |

| Ventricular True Aneurysm    | Associated with anterior MI Usually apical location Several weeks post-MI Symptoms/signs of CHF, systemic embolism and/or ventricular arrhythmias Double/diffuse apical impulse | No specific therapy (manage associated complications)                                                                                                                                                    |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | EKG: persistent ST segment elevation Echo: demonstration of the aneurysm (paradoxical wall motion) ± mural thrombus                                                             |                                                                                                                                                                                                          |
| Ventricular False Aneurysm   | Ventricular free wall rupture with containment by pericardium  ↑ risk of rupture                                                                                                | Surgical repair                                                                                                                                                                                          |
| Systemic (Arterial) Embolism | Associated with anterior MI  ± LV dysfunction  Echo: mural thrombus                                                                                                             | Warfarin anticoagulation for a period of 3-6 months (INR 2.0 – 3.0)                                                                                                                                      |
| Post-MI angina               | Consider infarct extension and/or re-infarction                                                                                                                                 | Emergent angiography + CABG                                                                                                                                                                              |
| Congestive Heart Failure     | Symptoms/signs of CHF (see below)  Pulmonary congestion and/or peripheral hypoperfusion (↑  PCWP and/or ↓ CI)                                                                   | If PCWP < 15 mmHg, consider IV fluid resuscitation If PCWP > 15 mmHg, give diuretics ± inotropic agents (e.g. digoxin, dobutamine) Long-term management → ACE-inhibitors and/or β-blockers (↓ mortality) |
| Arrhythmias                  | Any tachy- or bradyarrhythmias possible Usually occur within several hours or > 48 hours post-MI                                                                                | Prophylactic treatment not indicated (no survival benefit or ↑ mortality) Treatment depends on the type of arrhythmia and the hemodynamic status of the patient (see below)                              |

\* ↓ CI (Cardiac Index) → < 2.2 L/min/m<sup>2</sup>

# **APPROVED**

- \* Premature Ventricular Contractions (PVCs)  $\rightarrow$  give  $\beta$ -blockers; correct electrolyte abnormalities (if applicable)
- \* Although lidocaine is effective in preventing post-MI VF (ventricular fibrillation), its prophylactic use is discouraged because of no survival benefit († incidence of asystole)
- \* Sinus bradycardia and/or AV block + inferior/right ventricular MI > give atropine
- \* AV block + anterior MI → pacemaker (also used for bradyarrhythmias unresponsive to atropine)
- \* Most common cause of sudden death post-MI  $\rightarrow$  VF

#### Sudden Death

## **APPROVED**

By Zurab Azmaiparashvili at 2:42 am, Jan 24, 2009

- May be the **initial manifestation** of **CAD** in  $\sim 20-30\%$  of cases
- Most common cause of death related to CAD
- Secondary to VF (most common), Vtach and/or ventricular asystole
- Better prognosis when associated with MI (\perp risk of recurrence after successful resuscitation)
- Etiology → MI/ischemia, severe LV dysfunction (e.g. ventricular aneurysm), hypertrophic cardiomyopathy, long-QT syndromes
- Acute Management  $\rightarrow$  CPR, electrical defibrillation  $\pm$  anti-arrhythmic medications
- Long-term Management:
  - 1. Not associated with MI → electrophysiologic study + ICD (implantable cardioverter-defibrillator) placement
  - 2. Associated with  $MI \rightarrow$  management depends on LV function 1 month post-MI:
    - EF  $< 30\% \rightarrow ICD$  placement
    - EF 30-40% → electrophysiologic study ± ICD (in patients with inducible VF/Vtach)
    - EF > 40%  $\rightarrow$  no further management required

#### Non-Atherosclerotic CAD

- Coronary **embolism** → infective **endocarditis**, **mural thrombus** (e.g. post-MI, atrial fibrillation), cardiac **myxoma**
- Coronary vasculitis → SLE, Kawasaki's disease
- Coronary artery **spasm** → **cocaine** abuse
- Anomalous origin of coronary arteries  $\rightarrow$  young patient with MI + no cocaine
- Hypercoagulability  $\rightarrow$  Factor V mutation, anti-phospholipid antibody syndrome
- Coronary artery dissection → primary and/or associated with aortic dissection
- Post-radiotherapy
- Post-cardiac **transplantation** → **major limiting** factor for successful transplantation
- \* Remember  $\rightarrow$  withhold  $\beta$ -blockers for a period of 12-24 hours before stress testing (digoxin should also be discontinued, if possible)
- \* Remember → nitroglycerin (or any other nitrate) is contraindicated for 24 hours since the last dose of sildenafil/Viagra (↑ risk of severe hypotension)

# Drugs used in the management of CAD

# **APPROVED**

| Anti Anginal Madigations                                                                     |                                                                                             |                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anti-Anginal Medications Nitrates (nitroglycerin, isosorbide dinitrate)                      | <pre></pre>                                                                                 | Side effects → headache, flushing, hypotension, tachycardia, fluid retention, methemoglobinemia Contraindications → sildenafil (within 24 hours), BP < 90 mmHg, suspected RV infarction Development of tolerance (tachyphylaxis) with long- term use (manage with drug-                                                          |
| β-blockers (metoprolol, carvedilol, atenolol, propranolol, etc.)                             |                                                                                             | free periods of ≥ 12 hours)  Side effects → insomnia, depression, sexual dysfunction, bronchospasm, exacerbation of peripheral artery disease (PAD), hypotension, ↓ AV conduction, "masking" of hypoglycemia, exacerbation of CHF, ↑ LDL cholesterol Contraindications → severe CHF, AV block, BP < 90 mmHg, HR < 60, history of |
| Ca-channel blockers (verapamil, diltiazem, dihydropyridines → amlodipine, nicardipine, etc.) | ↓ afterload<br>↓ coronary spasm<br>↓ HR and contractility (with<br>verapamil and diltiazem) | asthma, COPD, PAD  Side effects → flushing, constipation, peripheral edema, exacerbation of CHF, ↓ AV conduction (with verapamil, diltiazem) Contraindications → BP < 90 mmHg, CHF, AV block                                                                                                                                     |

<sup>\*</sup> Idiosyncratic reaction to nitroglycerin, manifested as sudden onset of severe hypotension → treat with atropine

| Anti-Platelet Medications |                                   |                                         |
|---------------------------|-----------------------------------|-----------------------------------------|
| Aspirin (ASA)             | ↓ cycloxygenase activity →        | Side effects → PUD/GI                   |
|                           | <b>↓ thromboxane A2</b> synthesis | bleeding, "salicylism"                  |
|                           | <b>↓ platelet aggregation</b>     | (tinnitus, ↓ hearing, vertigo),         |
|                           |                                   | exacerbation of <b>asthma</b> , ↑       |
|                           |                                   | anion gap metabolic acidosis            |
|                           |                                   | Avoid in patients with nasal            |
|                           |                                   | polyps ± chronic rhinitis               |
|                           |                                   | (hypersensitivity reaction →            |
|                           |                                   | severe bronchospasm)                    |
| Clopidogrel, Ticlopidine  | Blockade of <b>ADP receptors</b>  | Side effects → bleeding                 |
|                           | → ↓ platelet aggregation          | <b>Neutropenia</b> and/or <b>TTP</b> (↑ |
|                           |                                   | risk with <b>ticlopidine</b> )          |
| GP IIb/IIIa Inhibitors    | ↓ vWF and fibrinogen              | Side effects → bleeding,                |
| (abciximab, tirofiban,    | binding ->                        | thrombocytopenia, coronary              |
| eptifibatide, lamifiban)  | ↓ platelet <b>aggregation</b>     | artery dissection                       |

<sup>\*</sup> Most potent anti-platelet agents → GP IIb/IIIa inhibitors

- \* Thrombolytic agents (alteplase (t-PA), streptokinase, anistreplase, reteplase, tenecteplase) → side effects include:
  - 1. bleeding
  - 2. intracranial hemorrhage
  - 3. **allergic** reactions (streptokinase, anistreplase)
  - 4. hypotension
  - 5. ↑ risk of **myocardial rupture** (if performed > 12 hours post-MI)
- \* Antidote for bleeding secondary to thrombolytic agent toxicity  $\rightarrow$   $\epsilon$ -aminocaproic acid (or any other anti-fibrinolytic agent)

## Valvular Heart Disease

#### **Aortic Stenosis**

## **APPROVED**

- Etiology:
  - 1. **Senile calcific aortic stenosis** (degenerative aortic valve disease) → **most common**; age > **55**; **males** > females
  - 2. Bicuspid a ortic valve  $\rightarrow$  age < 55; associated with coarctation of the aorta
  - 3. Rheumatic heart disease  $\rightarrow \sim 15$  years after rheumatic fever; universally associated with mitral valve disease (stenosis and/or regurgitation)
  - 4. Congenital aortic stenosis
- Pathophysiology: pressure overload of the LV / pressure gradient across the aortic valve (LV systolic pressure > aortic systolic pressure) → concentric LV hypertrophy (compensatory reaction maintaining normal cardiac output) → diastolic dysfucntion (↑ stiffness) → systolic dysfunction (final stage)
- Symptoms:
  - Angina → secondary to ↑ O<sub>2</sub> demand (from LV hypertrophy) + subendocardial ischemia (↑ LV filling pressures → ↓ diastolic coronary blood flow) ± coexistent CAD; prognosis → 50% 5-year survival
  - 2. Exertional **syncope** → secondary to **reflexive vasodilation** (induced by exertion) + **fixed cardiac output** (inability to ↑ CO with exercise), leading to ↓ **BP**; possible ventricular/atrial arrhythmias; **prognosis** → **50% 3-year survival**
  - 3. Dyspnea (symptoms/signs of CHF) → prognosis 50% 1-year survival
- Signs:
  - 1. **Pulsus parvus et tardus** (reduced and delayed carotid upstroke)
  - 2. Carotid thrill
  - 3. Sustained/forceful apical impulse (usually not displaced)
  - 4. Soft and/or absent A2 sound (possible paradoxical splitting of S2)
  - 5. S4 sound (may be palpable)
  - 6. **Ejection click** (shortly after S<sub>1</sub>) with bicuspid valve
  - 7. Harsh, **crescendo-decrescendo systolic murmur** (best heard at the right 2<sup>nd</sup> intercostal space) **radiating** to the **carotids** and/or the **apex** (Gallavardin phenomenon)
  - 8. ↑ murmur with amyl nitrite (↓ afterload) and/or leg raising (↑ preload)
  - 9.  $\downarrow$  murmur with Valsalva maneuver ( $\downarrow$  preload) and/or handgrip ( $\uparrow$  afterload)
- EKG → LV hypertrophy ± LBBB
- Chest X-ray → post-stenotic dilation of aortic root, cardiomegaly ± aortic valve calcification
- Best initial diagnostic test → echocardiography showing ↓ excursion of aortic valve leaflets, ↓ aortic valve surface area, LV hypertrophy and/or pressure gradient across the aortic valve
- Most accurate diagnostic test → left-heart catheterization
- Classification of aortic stenosis:
  - 1. **normal**  $\rightarrow$  2.5 3.5 cm<sup>2</sup>
  - 2. **mild**  $\rightarrow$  1.5 2.0 cm<sup>2</sup>
  - 3. **moderate**  $\rightarrow$  1.0 1.5 cm<sup>2</sup>
  - 4. severe  $\rightarrow 0.75 1.0 \text{ cm}^2$
  - 5. critical  $\rightarrow$  < 0.75 cm<sup>2</sup>

- Management:
  - 1. **Asymptomatic** aortic stenosis → **serial echocardiograms** (every 6-12 months with severe stenosis) + patient **education** (↓ exercise, nature of symptoms, etc.); **avoid vasodilators** (e.g. ACE inhibitors, hydralazine, nitroglycerin)
  - 2. Symptomatic aortic stenosis → aortic valve replacement
  - 3. Critically ill patient + indications for treatment → aortic valve balloon valvuloplasty
- \* Indications for a ortic valve replacement >
  - 1. **symptomatic** disease
  - 2. **critical** stenosis
  - 3. severe stenosis + LV dysfunction
  - 4. > moderate stenosis + CABG
- \* Remember -> there is no medical treatment for aortic stenosis
- \* According to 2007 guidelines **endocarditis prophylaxis** is **no longer recommended** for **acquired valvular disease** 
  - Differential Diagnosis →
    - 1. Hypertrophic cardiomyopathy → ↑ murmur with Valsalva maneuver and/or amyl nitrate; ↓ murmur with handgrip, squatting and/or leg raising
    - 2. Mitral regurgitation → holosystolic murmur radiating to the axilla (never to the carotids)
    - 3. Pulmonary stenosis  $\rightarrow \uparrow$  murmur with inspiration

By Zurab Azmaiparashvili at 2:42 am, Jan 24, 2009

## Aortic Insufficiency/Regurgitation

- Etiology:
  - 1. Valvular → bicuspid valve, infective endocarditis, rheumatic fever (associated with aortic stenosis ± mitral valve disease), connective tissue disorders (SLE, RA)
  - 2. Aortic root dilatation (supravalvular) → hypertension (most common cause; ↑ incidence with age), Marfan syndrome, syphilis, ankylosing spondylitis, aortic dissection
- \* Etiology of acute aortic insufficiency → infective endocarditis, aortic dissection, aortic trauma
  - **Men** > Women
  - Pathophysiology: volume overload of the LV → eccentric LV hypertrophy → ↑ chamber size/↑ end-diastolic volume → ↑ stroke volume → ↑ pulse pressure with ↑ systolic pressure + ↓ diastolic pressure (secondary to regurgitation + ↓ vascular resistance) → ↓ LV systolic function → CHF
- \* Pathophysiology of acute aortic insufficiency: sudden ↑ in end-diastolic pressure → pressure transmitted to pulmonary vasculature → acute pulmonary edema

- Symptoms:
  - 1. Fatigue
  - 2. Palpitations (secondary to arrhythmias and/or hyperdynamic circulation)
  - 3. **Dyspnea**, orthopnea (secondary to CHF)
  - 4. Exertional **angina** (secondary to ↓ **diastolic BP** leading to ↓ **coronary perfusion** ± LV hypertrophy)
  - 5. Possible syncope (secondary to  $\downarrow$  mean BP leading to  $\downarrow$  cerebral perfusion)
- \* Symptoms of **acute** aortic insufficiency **\rightarrow dyspnea**, hemodynamic instability ± manifestations of **underlying disease** (e.g. chest pain from aortic dissection)
  - Signs:
    - 1. Corrigan pulse → rapid, full upstroke with rapid collapse
    - 2. **De Musset** sign  $\rightarrow$  head bobbing with each systole
    - 3. **Duroziez** sign → "to-and-fro" (both systolic and diastolic) murmur/bruit over femoral arteries
    - 4. Quincke sign → pulsations in the nail beds (e.g. diastolic blanching)
    - 5. Traube sign → "pistol-shot" sounds over femoral arteries
    - 6. Muller sign  $\rightarrow$  pulsations in the uvula
    - 7. Hill sing  $\rightarrow$  20mmHg difference in femoral/brachial systolic BP ( $\uparrow$  femoral)
    - 8. Pulsus **bisferiens** (with combined stenosis and regurgitation)
    - 9. Hyperdynamic, displaced apical impulse
    - 10. **Decrescendo, diastolic murmur** best heard at the left (valvular) or right (supravalvular) **sternal border** (duration correlates with severity: ↓ **duration** ↑ **severity**)
    - 11. **Murmur** of aortic regurgitation **improves** with ↓ **preload** (e.g. Valsalva maneuver) and/or ↓ **afterload** (e.g. amyl nitrite)
    - 12. **Systolic murmur** (physiologic, flow murmur) best heard in the 2<sup>nd</sup> right intercostal space
    - 13. Austin-Flint murmur → mid-diastolic murmur resembling mitral stenosis
    - 14. **Soft S₁** sound (secondary to **early mitral** valve **closure**) → correlates with ↑ **severity**
    - 15. Soft/absent S2 sound
    - 16. Possible S₃ sound → indicates CHF
- \* Signs of acute a ortic insufficiency  $\rightarrow$  soft S<sub>1</sub>, soft/absent S<sub>2</sub>  $\pm$  short, diastolic murmur
  - EKG  $\rightarrow$  LV hypertrophy  $\pm$  LA enlargement
  - Chest X-ray  $\rightarrow$  LV enlargement  $\pm$  LA enlargement and/or a rtic root dilatation
  - **Best initial** diagnostic test → **echocardiography** showing aortic **regurgitation**, **fluttering** of **anterior mitral leaflet**, LV hypertrophy, aortic root dilatation
- \* Remember to order **blood cultures** in cases of **acute** aortic insufficiency, if **infective endocarditis** is suspected

- Management:
  - Asymptomatic with preserved LV function → serial echocardiograms + salt-restriction and diuretics (preload reduction) + ACE inhibitors or nifedipine (afterload reduction; ↓ disease progression)
  - 2. Indications for aortic valve replacement:
    - Symptomatic aortic regurgitation
    - EF < 50-55%
    - End-systolic LV size > 55 mm
- \* Management of acute aortic insufficiency  $\rightarrow$  emergent surgical intervention (may use sodium nitroprusside  $\pm$  digitalis as a bridge to surgery)
- \* IABP is contraindicated in aortic insufficiency
- \* Marfan syndrome with a ortic root diameter > 5-5.5 cm \rightarrow a ortic root replacement

#### Mitral Stenosis

- Almost always secondary to **rheumatic heart disease** (~ 10 years post-infection)
- **Females** > Males
- Most common valvular abnormality caused by rheumatic fever
- Pathophysiology: pressure gradient across the mitral valve → LA hypertrophy + ↑
   LA pressure → pressure transmitted to the pulmonary vasculature → pulmonary congestion → pulmonary hypertension → RV hypertrophy → cor pulmonale
- \* Cardiac output becomes more dependent on atrial contraction → any condition that impairs/shortens ventricular filling (e.g. atrial fibrillation, tachycardia) leads to clinical deterioration
  - Symptoms (~ 20 years post-infection):
    - 1. **dyspnea**, **orthopnea**, paroxysmal nocturnal dyspnea
    - 2. hemoptysis
    - 3. **palpitations** (secondary to atrial fibrillation)
    - 4. extreme weight loss
    - 5. manifestations of **systemic embolism** (stagnation of blood  $\pm$  atrial fibrillation)
    - 6. **hoarseness** (recurrent laryngeal nerve compression from LA enlargement)
    - 7. manifestations of **RV failure** (e.g. ascites, peripheral edema)
  - Signs:
    - 1. **loud S**1
    - 2. **opening snap/OS** (following S2 sound)  $\rightarrow$  S2 OS interval correlated with disease severity ( $\downarrow$  interval  $\uparrow$  severity)
    - 3. **mid-diastolic rumble** best heard at the **apex**  $\pm$  **pre-systolic accentuation** (lost with atrial fibrillation)
    - 4. **loud P2** and/or widely-split S2 (indicates pulmonary hypertension)
    - 5. **sternal lift**/right parasternal heave (secondary to RV enlargement)
    - 6. **irregularly irregular pulse** (with atrial fibrillation)
    - 7. manifestations of **RV failure** (e.g. hepatomegaly, JVD)
    - 8. pulmonary rales

- EKG → LA enlargement ("P mitrale") ± RV hypertrophy; atrial fibrillation
- Chest X-ray:
  - 1. LA enlargement → straight left heart border, "double density" right heart border, posterior displacement of the esophagus, elevation of left main bronchus, splaying of the carina
  - 2. Pulmonary **congestion** → ↑ vascular **markings**, **Kerley-B** lines
  - 3. Pulmonary hypertension → ↑ prominence of pulmonary arteries
  - 4. RV enlargement  $\rightarrow$  loss of retrosternal airspace
- Best initial diagnostic test → echocardiography showing ↓ excursion of mitral valve leaflets, valvular thickening, fusion of mitral valve leaflets, ↓ valvular surface area, LA enlargement
- Management:
  - 1. **Avoid** conditions that lead to ↓ **diastolic filling** of the LV (e.g. tachycardia, fever, exercise)
  - 2. Asymptomatic patients → serial echocardiograms
  - 3. Symptomatic patients  $\rightarrow$  salt-restriction, diuretics ( $\downarrow$  preload); consider  $\beta$ -blockers and/or Ca-channel antagonists ( $\downarrow$  HR)
  - 4. Atrial fibrillation  $\rightarrow$  anticoagulation with warfarin + digitalis for ventricular rate control (although  $\beta$ -blockers and/or Ca-channel antagonists can also be used for the same purpose, digoxin is the most common correct answer)
  - 5. **Indications** for **surgical** therapy:
    - Symptomatic, severe mitral stenosis (surface area < 1 cm<sup>2</sup>)
    - Failure of medical therapy
    - Worsening pulmonary hypertension
    - Recurrent embolization
  - 6. Surgical procedure of choice for young patients with non-calcified, pliable valves → balloon valvuloplasty (or mitral commissurotomy)
  - 7. **heavily calcified** valves ± coexistent **mitral regurgitation** → mitral valve **replacement**

## Mitral Insufficiency/Regurgitation

## **APPROVED**

By Zurab Azmaiparashvili at 2:42 am, Jan 24, 2009

• Etiology:

| Acute Mitral Regurgitation                  | Chronic Mitral Regurgitation                         |
|---------------------------------------------|------------------------------------------------------|
| Infective endocarditis                      | Mitral valve <b>prolapse</b> (most common cause of   |
| Papillary muscle rupture/dysfunction        | mitral regurgitation; see below)                     |
| (secondary to ischemia/MI)                  | Rheumatic fever                                      |
| Rupture of chordae tenidinae (spontaneous   | <b>Dilated</b> cardiomyopathy (or any other cause of |
| or associated with trauma and/or myxomatous | severe LV dilatation)                                |
| degeneration)                               | Hypertrophic cardiomyopathy                          |
| Prosthetic valve dysfunction                | Congenital                                           |
|                                             | Mitral valve annulus calcification                   |
|                                             | Connective tissue disorders                          |
|                                             | <b>Drug-</b> induced (e.g. anorexigenics)            |
|                                             | Any cause of acute mitral regurgitation              |

- Pathophysiology: volume overload of the LA and LV  $\rightarrow$  progressive LA enlargement and eccentric LV hypertrophy  $\rightarrow$  eventual LV  $\pm$  RV systolic dysfunction  $\rightarrow$  CHF
- \* Acute mitral regurgitation  $\rightarrow$  sudden increase in blood volume in a non-compliant LA  $\rightarrow \uparrow$  LA pressure  $\rightarrow$  pressure transmitted to pulmonary vasculature  $\rightarrow$  acute pulmonary edema  $\pm$  RV dysfunction
- \* Vicious cycle: mitral regurgitation → LV dilation → ↑ regurgitation...
  - Symptoms:
    - 1. **dyspnea, orthopnea**, paroxysmal nocturnal dyspnea
    - 2. fatigue
    - 3. manifestations of systemic embolism
    - 4. manifestations of pulmonary hypertension/RV failure
  - Signs:
    - 1. soft/absent S<sub>1</sub> sound
    - 2. widely-split S2 sound
    - 3. S3 sound
    - 4. **holosystolic** murmur **best heard** at the **apex** and **radiating** to the **axilla** and/or **back**
    - 5. ↑ murmur with ↑ preload (e.g. leg raising) and/or ↑ afterload (e.g. handgrip)
    - 6. possible **early diastolic** rumble (secondary to ↑ flow across the mitral valve)
    - 7. **pulsus parvus** (but not tardus)
    - 8. hyperdynamic, displaced apical impulse
    - 9. manifestations of **RV failure**
- \* Severe and/or acute mitral regurgitation  $\rightarrow \downarrow$  EF, S<sub>3</sub> and/or diastolic rumble
  - EKG  $\rightarrow$  LA enlargement  $\pm$  LV hypertrophy
  - Chest X-ray → cardiomegaly (both LA and LV enlargement) ± ↑ pulmonary vascular markings
  - Best initial diagnostic test → echocardiography showing both LA and LV enlargement, mitral regurgitation ± clues to etiology (e.g. vegetations with infective endocarditis)

- Most accurate diagnostic test → cardiac catheterization:
  - 1. **right heart** catheterization → **prominent V waves** in PCWP tracing
  - 2. **left heart** catheterization → **demonstration** of mitral regurgitation, **severity assessment** ± evaluation of **coronary anatomy**
- Management:
  - 1. Asymptomatic + normal/supranormal EF  $\rightarrow$  serial echocardiograms
  - 2. Symptomatic + normal/supranormal EF → ACE inhibitors, salt-restriction, diuretics (add warfarin and digoxin if atrial fibrillation)
  - 3. Indications for surgical therapy (mitral valve repair or replacement) →
    - Failure of medical therapy
    - Acute mitral regurgitation
    - EF < 60%
    - LV end-diastolic size > 45 mm

By Zurab Azmaiparashvili at 2:42 am, Jan 24, 2009

### Mitral Valve Prolapse (MVP)

- Synonyms → "click-murmur" syndrome, Barlow syndrome
- Most common valvular abnormality
- Most common cause of mitral regurgitation in the USA
- Females > Males; Young age
- Systolic bulging of  $\geq 1$  mitral leaflets into the LA  $\pm$  mitral regurgitation
- Secondary to myxomatous degeneration of the leaflets and/or chordae tenidinae
- Etiology:
  - 1. idiopathic
  - 2. **connective tissue** disorders (e.g. **Marfan** syndrome, Ehlers-Danlos syndrome)
- Commonly associated with **musculoskeletal** abnormalities (e.g. pectus excavatum)
- Clinical features → asymptomatic to atypical chest pain, dyspnea, anxiety, palpitations, near-syncope ± manifestations of mitral regurgitation
- Physical examination →
  - 1. mid-systolic click followed by late systolic murmur of mitral regurgitation
  - 2. click moves closer to S<sub>1</sub>/↑ murmur with Valsalva maneuver, standing, amyl nitrite
  - 3. click moves closer to S2/↓ murmur with squatting and/or handgrip
- Complications of MVP
  - 1. arrhythmias/sudden death
  - 2. **systemic embolism** (especially TIA/stroke)
  - 3. **rupture** of **chordae tenidinae** (with sudden decompensation)
  - 4. infective endocarditis
  - 5. progressive mitral regurgitation
- EKG (especially 24-hour Holter monitoring)  $\rightarrow$  arrhythmias (premature ventricular contractions, atrial fibrillation, supraventricular tachycardia, etc.)
- Chest X-ray → associated **musculoskeletal** abnormalities
- Best diagnostic test  $\rightarrow$  echocardiography demonstrating  $\geq$  2mm systolic displacement of mitral leaflets into the LA  $\pm$  associated mitral regurgitation
- Management:
  - 1. **Asymptomatic** + **no regurgitation** → **reassurance**; follow-up in 3-5 years
  - 2. Symptomatic  $\rightarrow \beta$ -blockers
  - 3. Presence of mitral regurgitation  $\rightarrow$  see above

## Tricuspid Insufficiency/Regurgitation

# **APPROVED**

By Zurab Azmaiparashvili at 2:42 am, Jan 24, 2009

- Etiology:
  - 1. **RV dilatation (most common**; secondary to **pressure**/volume **overload)**
  - 2. Infective endocarditis (most commonly affected valve in IV drug users)
  - 3. **Congenital** (e.g. Ebstein anomaly)
  - 4. **Rheumatic fever** (accompanied by mitral  $\pm$  aortic valve disease; primary involvement of the tricuspid valve less common)
  - 5. **Carcinoid** syndrome
  - 6. Tricuspid valve **prolapse** (secondary to connective tissue disorders)
- Clinical features → manifestations of **RV failure** (ascites, peripheral edema, hepatomegaly ± RUQ pain, jaundice)
- Physical examination:
  - 1. JVD with large V waves
  - 2. Hepatojugular reflux/pulsatile liver
  - 3. **Sternal lift**/right parasternal heave
  - 4. **Holosystolic** murmur that **increases** with **inspiration** (left sternal border)
  - 5. S3 sound best heard at lower left sternal border
- EKG and Chest X-ray  $\rightarrow$  RV  $\pm$  RA enlargement
- Best initial diagnostic test → echocardiography
- Management:
  - 1. Salt restriction, diuretics
  - 2. Annuloplasty for normal-appearing tricuspid valve
  - 3. Valve replacement, if pulmonary hypertension and/or valve damage

#### Prosthetic Valves

| Bioprosthetic (heterograft, homograft)      | Mechanical                               |
|---------------------------------------------|------------------------------------------|
| ↓ durability                                | ↑ durability                             |
| Anticoagulation not required (only aspirin) | Anticoagulation required (INR 2.5 – 3.5) |
| Endocarditis prophylaxis required           | Endocarditis prophylaxis required        |
| Contraindicated in children                 | Contraindicated in pregnancy             |

<sup>\*</sup> Tricuspid Stenosis → almost always secondary to **rheumatic fever**; **JVD** with **prominent "a" waves; diastolic rumble** that **increases** with **inspiration**; EKG and Chest X-ray → **RA enlargement** 

# Diseases of the Myocardium

### Dilated Cardiomyopathy (DCM)

# **APPROVED**

- Most common cardiomyopathy
- Most common reason for heart transplantation
- Characterized by biventricular dilatation and ↓ EF in the absence of pressure and/or volume overload or significant CAD (although CAD is the most common cause secondary dilated cardiomyopathy)
- Etiology:
  - 1. **Idiopathic** → **most common** cause of DCM; **African-American males** most commonly affected; possible **family history** (genetic component)
  - 2. **Post-viral** → usually **following** viral **myocarditis** (e.g. Coxsackie virus)
  - 3. Alcohol abuse → most common reversible cause of DCM
  - 4. **Drug-**induced → **doxorubicin**, **trastuzumab**, other chemotherapeutic agents
  - Metabolic → thiamine (vitamin B<sub>1</sub>) deficiency ("wet beriberi"), hypophosphatemia, hypocalcemia, uremia, carnithine deficiency, selenium deficiency
  - 6. Endocrine → thyroid disorders, pheochromocytoma
  - 7. Connective tissue disorders (e.g. SLE, RA)
  - 8. **Postpartum** (or peripartum) cardiomyopathy
  - 9. Prolonged tachycardia
  - 10. Selected causes of myocardial infiltration (e.g. hemochromatosis)
  - 11. Toxins → cocaine, lead and/or mercury poisoning
  - 12. **Neuromuscular** disorders (e.g. **Duchenne** muscular dystrophy)
- Clinical features → manifestations of LV failure ± RV failure (see congestive heart failure), atypical chest pain, both atrial and ventricular arrhythmias, manifestations of systemic embolism
- Physical examination:
  - 1. Jugular venous distention (JVD)  $\pm$  parasternal lift
  - 2. Displaced apical impulse
  - 3. S3 sound
  - 4. Murmur of mitral regurgitation
- EKG → LV hypertrophy, LBBB and/or RBBB, non-specific ST-T wave abnormalities ± atrial and/or ventricular arrhythmias
- Chest X-ray → cardiomegaly ± pulmonary congestion
- Best initial diagnostic test  $\rightarrow$  echocardiography demonstrating biventricular (possible four-chamber) dilatation and  $\downarrow$  EF  $\pm$  mitral and/or tricuspid regurgitation
- Most accurate diagnostic test for heart failure → MUGA scan (multi gated acquisition scan):
  - 1. **More accurate** than echocardiography
  - 2. Use in patients on doxorubicin and/or trastuzumab therapy for EF assessment
- Management:
  - 1. Treatment of reversible causes of DCM (e.g. alcohol abstinence)
  - 2. Routine CHF therapy (e.g. diuretics, ACE inhibitors,  $\beta$ -blockers)  $\rightarrow$  see CHF
  - 3. Anticoagulation, if atrial fibrillation, mural thrombus, systemic embolism and/or 11 EF
  - 4. Management of **arrhythmias** (consider ICD placement)
  - 5. **Definite therapy** → cardiac transplantation
- Leading cause of mortality  $\rightarrow$  sudden death (secondary to arrhythmias)

## Hypertrophic Cardiomyopathy (HCM)

By Zurab Azmaiparashvili at 2:43 am, Jan 24, 2009

- Synonyms → hypertrophic obstructive cardiomyopathy (HOCM), idiopathic hypertrophic subaortic stenosis (IHSS), asymmetric septal hypertrophy (ASH)
- Characterized by marked LV hypertrophy (unexplained by hypertension and/or aortic stenosis), asymmetric septal hypertrophy, diastolic LV dysfunction ± LV outflow tract obstruction
- Etiology:
  - 1. **Autosomal dominant** mutations involving the **sarcomere** (~50% of cases)
  - 2. Sporadic
- \* Secondary hypertrophic cardiomyopathy → hypertension, aortic stenosis, myocardial infiltration
  - Most common cause of sudden death in otherwise healthy, young athletes
  - Pathophysiology:
    - 1. ↓ compliance + abnormal relaxation → diastolic dysfunction → ↑ end-diastolic pressure → manifestations of angina and dyspnea
    - 2. Asymmetric septal hypertrophy → narrowing of the LVOT (LV outflow tract) → systolic anterior motion of the mitral valve (Bernoulli effect) → dynamic LVOT obstruction ± mitral regurgitation
    - 3.  $\uparrow$  arrhythmogenic potential of the myocardium  $\rightarrow$  manifestations of syncope  $\pm$  sudden death
- \* **HCM** is associated with ↑ **EF** (secondary to ↑ systolic function)
- \* A small proportion of patients with HCM progress to systolic dysfunction and DCM
  - Symptoms (especially common in older patients) → triad of chest pain, syncope (usually post-exercise) and dyspnea
- \* Younger patients most commonly present with syncope and/or sudden death
  - Signs:
    - 1. Pulsis bisferiens
    - 2. Prominent jugular venous "a" waves
    - 3. "Double" or "triple" apical impulse
    - 4. S4 sound
    - 5. Loud, **systolic ejection murmur** (no radiation to the carotids) ± murmur of **mitral regurgitation**

• Factors that influence dynamic LVOT obstruction (and change murmur intensity):

| ↑ LVOT obstruction (↑ murmur intensity) | ↓ LVOT obstruction (↓ murmur intensity) |
|-----------------------------------------|-----------------------------------------|
| Decreased afterload:                    | Increased afterload:                    |
| Amyl nitrite                            | Handgrip                                |
| Vasodilators (e.g. nitroglycerin)       | Phenylephrine                           |
|                                         | Squatting                               |
| Decreased preload:                      | Increased preload:                      |
| Valsalva maneuver                       | Blood volume expansion                  |
| Dehydration                             | Bradycardia                             |
| Diuretics                               |                                         |
| Nitroglycerin                           |                                         |
| Tachycardia                             |                                         |

| Increased contractility:      | Decreased contractility:                |  |
|-------------------------------|-----------------------------------------|--|
| Digoxin, dobutamine, dopamine | β-blockers                              |  |
| Post-PVC                      | Ca-channel antagonists (e.g. verapamil) |  |
|                               | Disopyramide                            |  |
|                               | Sedation/Anesthesia                     |  |

- EKG → LV hypertrophy, non-specific ST-T wave changes, "pseudo-Q" waves in precordial leads; possible ventricular arrhythmias (more commonly detected during 48-72 h EKG monitoring)
- Best initial diagnostic test  $\rightarrow$  echocardiography showing marked LV enlargement  $\pm$  asymmetric septal hypertrophy, systolic anterior motion of the mitral valve and/or early closure of the aortic valve
- \* Risk factors for sudden death in patients with HCM  $\rightarrow$ 
  - 1. family history of sudden death
  - 2. personal history of sudden death
  - 3. **young** age; **male** gender
  - 4. history of syncope
  - 5.  $\uparrow \uparrow$  LV hypertrophy
  - 6. ventricular tachycardia

By Zurab Azmaiparashvili at 2:43 am, Jan 24, 2009

#### • Management:

- 1. Asymptomatic + no/minimal risk for sudden death  $\rightarrow \downarrow$  exercise, avoid factors that lead to  $\uparrow$  LVOT obstruction; yearly follow-up
- 2. Asymptomatic + high risk for sudden death → as above + ICD placement or amiodarone therapy
- 3. Symptomatic + no/minimal risk for sudden death  $\rightarrow$  high-dose  $\beta$ -blockers
- 4. Symptomatic + high risk for sudden death → as above + ICD placement or amiodarone therapy
- 5. Symptomatic + contraindications to/failure of β-blockers → consider verapamil and/or disopyramide
- 6. Symptomatic despite optimal medical therapy → surgical myectomy or alcohol-induced septal ablation; consider dual-chamber pacing as an alternative
- 7. Progression to DCM  $\rightarrow$  consider heart transplantation
- \* Don't forget to screen 1st degree relatives (physical exam, EKG, echocardiography)
- \* Although HCM is the leading cause of sudden death, **echocardiography** is **not** to be **used** as a **screening** tool in **asymptomatic** young athletes with **normal physical** exam

### Restrictive Cardiomyopathy (RCM)

- A group of disorders characterized by **stiff**, **non-compliant myocardium** resulting in **diastolic dysfunction**
- Etiology:
  - 1. Idiopathic
  - 2. Myocardial infiltration → amyloidosis, hemochromatosis, sarcoidosis, glycogen storage disorders
  - 3. Carcinoid syndrome
  - 4. **Hyper-eosinophilic** syndromes (e.g. Loeffler's endocarditis)/**endomyocardial fibrosis** (primary disorder or terminal stage of hyper-eosinophilic syndromes)
  - 5. Scleroderma
  - 6. Radiation exposure
- \* Endomyocardial fibrosis  $\rightarrow$  seen in tropical Africa (Loeffler's endocarditis has no geographic predilection; otherwise quite similar, at least for the USMLE)
- \* Clues to Loeffler's endocarditis  $\rightarrow$  young male, small/normal ventricles, thrombosis involving the apex and/or the inflow tract (under the mitral valve) of the LV causing systemic embolism  $\pm$  mitral regurgitation; eventual fibrosis (secondary endomyocardial fibrosis) with progression to RCM
  - Pathophysiology: ↓ compliance → diastolic dysfunction → ↑ filling pressures (with manifestations of systemic/pulmonary congestion) ± ↓ cardiac output (despite normal EF)
  - Clinical features → similar to **constrictive pericarditis** (major differential diagnosis) with **manifestations** of **RV** and **LV failure** (edema, ascites, dyspnea, fatigue, etc.)
  - Physical exam:
    - 1. **JVD** with **rapid** X and Y descents
    - 2. Possible **Kussmaul sign** († JVP with inspiration)
    - 3. **Soft** heart sounds
    - 4. Possible S<sub>3</sub> and/or S<sub>4</sub>
  - EKG → low voltage, "pseudo-Q" waves, conduction abnormalities
  - Chest X-ray  $\rightarrow$  pulmonary congestion  $\pm$  bilateral pleural effusion + normal heart size
  - Best initial diagnostic test → echocardiography showing thickening of the myocardium, normal ventricular cavity size, atrial enlargement and normal EF
- \* Low-voltage EKG + thick myocardium = RCM
- \* Echocardiographic findings suggestive of amyloidosis → myocardial "speckling" (granular, sparkling appearance), pericardial effusion
- \* Echocardiographic findings suggestive of endomyocardial fibrosis → apical thrombosis, thick endocardium under the mitral valve, mitral regurgitation
  - Most accurate diagnostic test → cardiac catheterization showing the "square-root" sign or "dip and plateau" pattern (rapid rise in diastolic pressure with subsequent plateau); elevated (but not equal) diastolic pressures
  - Most accurate diagnostic test for etiology determination → endomyocardial biopsy

- Management:
  - 1. treatment/correction of any underlying abnormality
  - 2. **no effective** medical therapy for **idiopathic RCM**
  - 3. **symptomatic** treatment (e.g. diuretics for CHF)
  - 4. consider heart transplantation

By Zurab Azmaiparashvili at 2:43 am, Jan 24, 2009

### Myocarditis

- Inflammation of the myocardium with ↑ risk of progression to DCM
- Etiology:
  - 1. **Idiopathic** (most common; presumed to be viral)
  - 2. Infectious:
    - Viral (e.g. Coxsackie virus, adenovirus, HIV, EBV) → most common known etiology in the USA
    - Bacterial (e.g. S. aureus, diphtheria)
    - Lyme disease (Borrelia burgdorferi)
    - Chagas disease (Trypanosoma *cruzi*) → most common cause in Central and South America
  - 3. **Drug**/Toxin-related → **doxorubicin**, **cocaine**
  - 4. Scorpion/Snake venom
  - 5. Connective tissue disorders → SLE, RA, dermatomyositis
  - 6. Granulomatous disorders → sarcoidosis
  - 7. Acute rheumatic fever
- Clinical features → asymptomatic to chest pain, manifestations of CHF, palpitations (secondary to arrhythmias), ↑ temperature; possible sudden death (antecedent viral infection common)
- Lab findings → ↑ ESR, ↑ WBC count, ↑ CK-MB and/or cardiac troponins, possible ↑ antibody titers against suspected viruses
- EKG  $\rightarrow$  non-specific ST-T wave changes  $\pm$  conduction abnormalities
- Chest X-ray  $\rightarrow$  cardiomegaly  $\pm$  pulmonary congestion
- Echocardiography → diffuse/local wall motion abnormalities, ↓ EF ± chamber dilatation
- Most accurate diagnostic test → endomyocardial biopsy
- Management → supportive; consider heart transplantation in fulminant myocarditis

# Diseases of the Pericardium

#### Acute Pericarditis

## **APPROVED**

- Etiology:
  - 1. **Idiopathic** (presumed to be viral)
  - 2. Infectious:
    - Viral (e.g. Coxsackie virus, adenovirus, HIV) → most common (after idiopathic pericarditis)
    - Bacterial (e.g. S. aureus, S. pyogenes)
    - TB
  - 3. Post-MI:
    - Local irritation (following transmural MI) → within 1 week
    - Dressler syndrome (autoimmune) → after 1 week
  - 4. **Connective tissue** disorders (e.g. SLE, RA, scleroderma)
  - 5. Uremia
  - 6. Hypothyroidism
  - 7. Radiation exposure
  - 8. **Post-cardiotomy** syndrome → within several weeks of open heart surgery
  - 9. **Malignancy** (e.g. **lymphomas**, breast and lung carcinomas, melanoma)
  - 10. **Drug**-induced → **procainamide**, **hydralazine** (drugs that cause lupus-like syndrome)
- Clinical features → possible antecedent URI followed by "pleuritic" chest pain, ↑ temperature, myalgias, headache, fatigue ± friction rub (scratchy sound with 3 components → atrial systole, ventricular systole and ventricular diastole)
- Characteristics of chest pain in acute pericarditis:
  - 1. **substernal** location
  - 2. radiation to the trapezius
  - 3. worse with deep breathing, swallowing and/or lying down
  - 4. improves with sitting up and/or leaning forward
- Chest X-ray  $\rightarrow$  **normal** to  $\uparrow$  cardiac silhouette (see pericardial effusion)
- Best initial diagnostic test → EKG:
  - 1. Stage I  $\Rightarrow$  diffuse, concave ST segment elevation (except aVR and V<sub>1</sub>)  $\pm$  PR segment depression + upright T waves
  - 2. Stage II  $\rightarrow$  normal ST segment  $\pm$  PR segment depression + upright T waves
  - 3. Stage III → normal ST and PR segments + inverted T waves
  - 4. Stage IV → normalization of all EKG changes
- Order **echocardiography** if you suspect:
  - 1. Myocarditis
  - 2. Pericardial effusion
- Management:
  - 1. **Treatment** of any **underlying** disease (e.g. **dialysis** for **uremia**; **drainage** + **antibiotics** for **bacterial** pericarditis)
  - 2. **NSAIDs** (e.g. aspirin, ibuprofen) → **symptomatic** relief (consider adding **colchicine** to prevent **recurrent** pericarditis)
  - 3. Steroids  $\rightarrow$  intractable cases
  - 4. Avoid anticoagulation  $\rightarrow \uparrow$  risk of progression to hemorrhagic pericarditis
- Complications → pericardial effusion, cardiac tamponade, constrictive pericarditis, recurrent pericarditis

• Acute Pericarditis (Stage I)



### Pericardial Effusion

# **APPROVED**

By Zurab Azmaiparashvili at 2:43 am, Jan 24, 2009

- Virtually any cause of acute pericarditis can result in exudative pericardial effusion:
  - 1. Serosanguinous pericardial effusion → consider TB, malignant effusion, uremia
  - 2. Frank blood (hemopericardium) → consider myocardial free wall rupture, coagulopathy, aortic dissection, trauma
- Transudative pericardial effusion  $\rightarrow$  consider CHF, cirrhosis, nephrotic syndrome
- Clinical features  $\rightarrow$  similar to acute pericarditis, except:
  - 1. distant/soft heart sounds
  - 2. **non-palpable** apical impulse
- Chest X-ray → ↑ cardiac silhouette ("water-bottle" appearance) + no congestion
- EKG → low voltage ± electrical alternans
- Best initial diagnostic test → echocardiography ("echo free" space)
- Most accurate diagnostic test → pericardiocentesis
- Management → similar to acute pericarditis + serial echocardiograms (consider fluid aspiration)
- Complications → cardiac tamponade

## Cardiac Tamponade

- Syndrome characterized by **rapid accumulation** of and/or **large volume** pericardial **effusion** leading to **compression** of the heart
- Etiology → virtually any cause of acute pericarditis can result in cardiac tamponade;
   most common/notable examples include:
  - 1. malignancies (most common)
  - 2. idiopathic pericarditis
  - 3 uremia
  - 4. infectious pericarditis → bacterial, TB
  - 5. trauma
  - 6. aortic dissection
  - 7. ventricular free wall rupture

- Pathophysiology: ↑ intrapericardial pressure → ↑ diastolic pressure → ↓ venous return → ↓ CO → cardiogenic shock
- Clinical features:
  - 1. **Beck's triad** → hypotension + JVD + "muffled" (distant/soft) heart sounds
  - 2. Tachycardia, tachypnea
  - 3. **Pulsus paradoxus**  $\Rightarrow$  > 10 mmHg fall in BP with inspiration ( $\downarrow$ /absent pulse with inspiration)
  - 4. **JVD** with **prominent X** but **absent Y** descent
  - 5. Narrow pulse pressure
- Chest X-ray  $\rightarrow \uparrow$  cardiac silhouette ("water-bottle" appearance)
- EKG → low voltage, electrical alternans
- Best initial step in patient management → emergent pericardiocentesis
- Best initial diagnostic test → echocardiography showing large pericardial effusion + ↓
  diastolic filling
- Cardiac catheterization → elevated and equal diastolic pressures (equilibration of diastolic pressures)
- Management → emergent pericardiocentesis (consider "pericardial window" or pericardiotomy as an alternative) ± IV fluids and/or pressor agents



#### Constrictive Pericarditis

- Syndrome characterized by **diffusely thickened**, **calcified**, **non-compliant pericardium** resulting in  $\downarrow$  **ventricular filling**
- May follow virtually any cause of acute pericarditis
- **Most commonly** follows:
  - 1. **TB**
  - 2. Radiation exposure
  - 3. Open heart surgery
  - 4. **Recurrent** pericarditis
- Clinical features → manifestations of **biventricular** heart **failure** (with symptoms/signs of **RV failure predominating**):
  - 1. Peripheral edema, ascites, RUQ tenderness
  - 2. **Dyspnea** on exertion  $\pm$  orthopnea
  - 3. Hepatomegaly  $\pm$  jaundice
  - 4. **JVD** with **prominent X** and **Y** descents

- 5. JVD with inspiration  $\rightarrow$  Kussmaul sign
- 6. **Distant**/soft heart **sounds** ± **pericardial knock** (early diastolic sound; higher pitched than S<sub>3</sub>)
- Chest X-ray → pericardial calcifications
- EKG  $\rightarrow$  low voltage  $\pm$  atrial fibrillation
- Echocardiography → ↑ early diastolic **mitral flow rate** (↓ flow with **inspiration**) ± **thick pericardium**
- Most accurate diagnostic test → chest CT or MRI showing thickened, calcified pericardium
- Cardiac catheterization → elevated and equal diastolic pressures, "square-root" sign or "dip and plateau" pattern, normal CO
- Management:
  - 1. Salt restriction, diuretics
  - 2. Definite treatment → pericardiectomy or "pericardial stripping")

## Differential Diagnosis of RCM, Cardiac Tamponade and Constrictive Pericarditis

|                      | Restrictive<br>Cardiomyopathy | Cardiac Tamponade | Constrictive<br>Pericarditis |
|----------------------|-------------------------------|-------------------|------------------------------|
| Pulsus Paradoxus     | -                             | +                 | -                            |
| Kussmaul Sign        | ±                             | -                 | +                            |
| Pericardial Knock    | -                             | -                 | +                            |
| Prominent Y descent  | ±                             | -                 | +                            |
| Low Voltage          | +                             | +                 | +                            |
| Electrical Alternans | -                             | +                 | -                            |
| Thick Myocardium     | +                             | -                 | -                            |
| Thick Pericardium    | -                             | -                 | +                            |
| Pericardial Effusion | -                             | +                 | -                            |
| "Square-Root" Sign   | +                             | -                 | +                            |
| Equilibration of     | -                             | +                 | +                            |
| Diastolic Pressures  |                               |                   |                              |

• "Square-Root" Sign with Equilibration of Diastolic Pressures:



# Bradyarrhythmias/Conduction Abnormalities

# **APPROVED**

### Sinus Bradycardia

- Sinus rhythm with rate < 60 bpm
- Etiology:
  - 1. ↑ vagal tone → cardiovascular conditioning (e.g. athletes), inferior MI, vomiting, ↑ ICP (intracranial pressure), carotid sinus syndrome, straining (e.g. Valsalva maneuver)
  - 2. Drug-induced  $\rightarrow$   $\beta$ -blockers, Ca-channel antagonists, cardiac glycosides
  - 3. Hypothyroidism
  - 4. Hypothermia
  - 5. **SA node** dysfunction
- Clinical features  $\rightarrow$  asymptomatic to palpitations and/or hemodynamic instability (e.g. chest pain, confusion, syncope, dyspnea/CHF, hypotension)
- EKG → normal P waves preceding each QRS complex; rate < 60 bpm
- Management:
  - 1. Asymptomatic → treatment not indicated
  - 2. Acutely symptomatic → atropine
  - 3. Acutely symptomatic despite atropine → temporary pacemaker
  - 4. Symptomatic (chronic) → permanent pacemaker (definite therapy)
  - 5. **Drug**-induced  $\rightarrow$  removal of any offending agent  $\pm$  specific antidotes (e.g. glucagon for  $\beta$ -blockers)
  - 6. Secondary to **hypothyroidism** → **L-thyroxine** replacement
- \* Sinus Arrhythmia → normal variant; ↑ HR with inspiration and ↓ HR with expiration
- \* SA Node Dysfunction  $\rightarrow$  secondary to **structural** abnormalities (e.g. amyloidosis, sarcoidosis, age-related fibrosis, post-MI scarring); may result in sinus **bradycardia**, sinus **pause/arrest** and/or **tachycardia-bradycardia** syndrome; management  $\rightarrow$  permanent **pacemaker** usually required
- \* Tachycardia-Bradycardia Syndrome (Sick Sinus Syndrome) → alternation of **bradyarrhythmias** with **tachyarrhythmias** (especially atrial **fibrillation** and/or **flutter**); management → permanent **pacemaker** (for bradyarrhythmias) + medications that **decrease HR** (for associated tachyarrhythmias)
- \* Carotid Sinus Syndrome (Carotid Sinus Hypersensitivity) → carotid massage induced sinus pause > 3 sec in duration and/or > 50 mmHg decrease in BP; management → permanent pacemaker (avoid diagnostic carotid massage in patients with audible carotid bruits and/or history of cerebrovascular disease)

- \* **EKG Classification** of Atrioventricular (AV) Block:
  - 1. 1<sup>st</sup> degree AV block
  - 2. 2<sup>nd</sup> degree AV block:
    - Mobitz type I (Wenckebach)
    - Mobitz type II
  - 3. 3<sup>rd</sup> degree (complete) AV block

### First Degree AV Block

## **APPROVED**

By Zurab Azmaiparashvili at 2:43 am, Jan 24, 2009

- Etiology:
  - 1. ↑ vagal tone
  - 2. Acute inferior/right ventricular MI
  - 3. Myocarditis (e.g. Lyme disease)
  - 4. **Infiltrative** disorders (e.g. amyloidosis)
  - 5. Acute rheumatic fever
  - 6. **Drug**-induced (e.g. β-blockers, Ca-channel antagonists, glycosides)
  - 7. Age-related **fibrosis**
- Usually asymptomatic
- EKG  $\rightarrow$  PR interval > 0.2 s
- Management → usually **not indicated** (unless symptomatic)

### Mobitz Type I (Wenckebach) Second Degree AV Block

- Etiology: see 1<sup>st</sup> degree AV block
- Usually asymptomatic
- EKG (see image below) →
  - 1. **Progressive PR** interval **prolongation** followed by
  - 2. **Non-conducted P** wave (dropped QRS complex)
  - 3. **PR** interval **before** the non-conducted P wave **longer** than **PR** interval **after** the non-conducted P wave
  - 4. **RR** interval **encompassing** the non-conducted P wave **shorter** than **2 RR** intervals **preceding** the non-conducted P wave



- Management:
  - 1. Asymptomatic → treatment not indicated
  - 2. Acutely symptomatic → atropine
  - 3. Acutely symptomatic despite atropine → temporary pacemaker
  - 4. Symptomatic (chronic) → permanent pacemaker (definite therapy)

### Mobitz Type II Second Degree AV Block

- Etiology (usually structural):
  - 1. Anterior MI
  - 2. Age-related fibrosis
  - 3. **Infiltrative**/inflammatory disorders
  - 4. **Drug-**induced (e.g. **digitalis**)
- Clinical features → asymptomatic to hemodynamic instability
- 1 risk of progression to 3<sup>rd</sup> degree AV block
- EKG (see image below) →
  - 1. Sudden failure of P wave conduction
  - 2. No progressive PR interval prolongation
  - 3. **PR** interval of **fixed duration** (normal or prolonged)



## **APPROVED**

By Zurab Azmaiparashvili at 2:43 am, Jan 24, 2009

- Management:
  - 1. Symptomatic/asymptomatic → permanent pacemaker
  - 2. **Acutely** symptomatic → **temporary** (transvenous or transcutaneous) **pacemaker** (consider **isoproterenol** or **epinephrine** if pacing not immediately available)

### Third Degree (Complete) AV Block

- Etiology:
  - 1. Age-related fibrosis (most common)
  - 2. Scarring from previous MI
  - 3. **Infiltrative**/inflammatory disorders
  - 4. **Drug-**induced (e.g. digitalis)
  - 5. **Seronegative spondyloarthropathies** (e.g. ankylosing spondylitis)
- Clinical features → asymptomatic to hemodynamic instability; manifestations of AV dissociation:
  - 1. "Cannon" a waves (giant a waves)
  - 2. Variable intensity of S<sub>1</sub> sound
  - 3. Intermittent S<sub>3</sub> and/or S<sub>4</sub>
- Frequent Adams-Stoke attacks → syncope secondary to transient asystole
- EKG (see image below) →
  - 1. No relationship between P waves and QRS complexes
  - 2. **Faster** atrial rhythm
  - 3. Junctional escape rhythm → narrow QRS; rate 40-60 bpm
  - 4. Ventricular escape rhythm → wide QRS; rate < 40 bpm



• Management → Permanent pacemaker (see Mobitz type II AV block)

## Comparison between Mobitz type I and Mobitz type II AV block

|                                          | Mobitz Type I            | Mobitz Type II              |
|------------------------------------------|--------------------------|-----------------------------|
| Location of Block                        | AV Node                  | His-Purkinje System         |
| Associated MI                            | Inferior/Right Ventricle | Anterior                    |
| Associated with ↑ vagal tone             | +                        | -                           |
| QRS complex                              | Usually narrow           | Usually wide (infra-Hisian) |
| Progression to 3 <sup>rd</sup> degree AV | ± (escape rhythm usually | + (escape rhythm usually    |
| Block                                    | junctional)              | ventricular)                |
| Adams-Stoke syndrome                     | -                        | +                           |
| Effect of Atropine                       | ↓ PR interval (↑ AV      | Usually <b>none</b>         |
|                                          | conduction)              |                             |

## Bundle Branch Block

## **APPROVED**

By Zurab Azmaiparashvili at 2:43 am, Jan 24, 2009

|               | Left Bundle Branch Block               | Right Bundle Branch Block         |
|---------------|----------------------------------------|-----------------------------------|
|               | (LBBB)                                 | (RBBB)                            |
| Etiology      | CAD/acute MI                           | Frequently seen in <b>normal</b>  |
|               | Hypertension                           | individuals                       |
|               | Aortic valve disease                   | Consider <b>PE</b> if acute onset |
|               | Cardiomyopathies                       | Surgical repair of VSD            |
|               |                                        | Congenital (e.g. associated       |
|               |                                        | with ASD or Ebstein anomaly)      |
| Physical Exam | Paradoxically split S2                 | Widely split S2                   |
| EKG           | QRS $> 0.12 \text{ s}$                 | QRS > 0.12  s                     |
|               | QS pattern in V1-V2                    | rSR pattern with inverted T       |
|               | Notched, tall R waves with             | waves in V1-V2                    |
|               | inverted T waves in V <sub>6</sub> , I | Wide, deep S waves in V6, I       |
| EKG Mnemonic  | WiLLiaM                                | MaRRoW                            |

### • LBBB:



### • RBBB:



### **Indications for Permanent Pacing**

## **APPROVED**

By Zurab Azmaiparashvili at 2:44 am, Jan 24, 2009

- Carotid sinus hypersensitivity
- Symptomatic bradycardia secondary to SA node dysfunction
- Symptomatic bradycardia secondary to AV block
- Postoperative AV block
- **Asymptomatic 3<sup>rd</sup> degree** AV block (especially if rate < 40 bpm)
- **Asymptomatic Mobitz type II** 2<sup>nd</sup> degree AV block (especially if infra-Hisian)
- Asystole > 3 sec

### \* Algorithm - Bradycardia



## Tachyarrhythmias

## **APPROVED**

### Sinus Tachycardia

By Zurab Azmaiparashvili at 2:44 am, Jan 24, 2009

- Sinus rhythm with rate > 100 bpm (usually < 200 bpm)
- Etiology:
  - 1. ↑ temperature
  - 2. Volume depletion/hypotension
  - 3. **Anxiety/Pain**
  - 4. Exercise
  - 5. Hyperthyroidism
  - 6. Anemia
  - 7. Congestive heart failure
  - 8. Pulmonary embolism
  - 9. **Drug**-induced → caffeine, ethanol, atropine, sympathomimetics
  - 10. Withdrawal from β-blockers
- Clinical features → asymptomatic to palpitations ± manifestations of hemodynamic instability (very rare; only in patients with underlying disease)
- EKG  $\rightarrow$  normal P waves preceding each QRS complex; rate > 100 bpm
- Management:
  - 1. **Correction** of any **underlying** abnormality
  - 2. Overtly **symptomatic** and/or patient with **CAD** → consider β-blockers and/or Ca-channel antagonists

### Premature Atrial Contractions (PACs)

- > 60% of adults
- Common triggers → caffeine, alcohol and/or nicotine
- May be associated with **CAD**, **COPD** or **electrolyte** disturbances
- Clinical features  $\rightarrow$  asymptomatic to palpitations
- EKG →
  - 1. Early P wave with a different morphology
  - 2. Normal QRS
  - 3. PAC followed by a less than fully compensatory pause



- May degenerate into atrial fibrillation and/or flutter (especially in patients with CAD)
- Management → usually **not indicated** (except for **healthier lifestyle**); consider β-blockers in patients with CAD

### Paroxysmal Supraventricular Tachycardia (PSVT)

- Characterized by:
  - 1. Abrupt onset and termination
  - 2. Regular rhythm; rate  $\sim 150-250$  bpm
  - 3. Narrow QRS complexes
- Usually initiated by a PAC
- Secondary to reentrant circuit within the AV node (~80% of cases) → AV nodal reentrant tachycardia (AVNRT)
- Frequently found in **otherwise healthy** individuals
- Clinical features → asymptomatic to **palpitations**; manifestations of **hemodynamic instability**
- EKG → no discernible P waves ("buried in the QRS") with normal-appearing QRS and T waves (possible "retrograde" P wave following the QRS complex with AVNRT)



- Management:
  - 1. **Best initial** step → **vagal maneuvers** (e.g. carotid massage, Valsalva maneuver, head immersion in cold water)
  - 2. No response to vagal stimulation → IV adenosine (drug of choice); repeat 2x at a higher dose if unsuccessful
  - 3. No response to adenosine  $\rightarrow$  consider IV verapamil,  $\beta$ -blockers or digoxin
  - 4. Hemodynamic instability  $\pm$  EF < 40%  $\rightarrow$  DC cardioversion
  - 5. **Definite** (curative) treatment → radiofrequency/catheter ablation
  - 6. Chronic management if catheter ablation not possible  $\rightarrow$   $\beta$ -blockers or Cachannel antagonists

### Multifocal Atrial Tachycardia (MAT)

- Characterized by:
  - 1. **Irregular** rhythm; rate ~ 100-200 bpm
  - 2. Narrow QRS complexes
- Seen in patients with severe lung disease and hypoxia; possible electrolyte and/or acidbase abnormalities
- Clinical features → **asymptomatic** to **palpitations**; possible manifestations of hemodynamic instability
- EKG →
  - 1.  $\geq$  3 different P wave morphologies
  - 2. > 3 different PR intervals
  - 3. **Irregular RR** intervals
  - 4. Normal-appearing QRS
  - 5. Rate > 100 bpm



- Management → treatment/correction of any underlying disorder ± Ca-channel antagonists and/or β-blockers (digoxin makes MAT worse)
- \* Criteria of MAT but rate < 100 bpm > Wandering Atrial Pacemaker

## **APPROVED**

Atrial Flutter (AF)

- Unstable rhythm that usually progresses to atrial fibrillation or converts to sinus rhythm
- Characterized by:
  - 1. **Regular** rhythm
  - 2. Atrial rate  $\sim 300$
  - 3. Ventricular rate ~ 150 (physiologic 2:1 AV block)
  - 4. Narrow QRS complexes (unless aberrant conduction)
- Risk factors → CAD, hypertension, hyperthyroidism, mitral valve disease, pericarditis, cardiomyopathies, COPD, PE, alcohol abuse
- \* AF with **higher degrees** of **AV block** (e.g. 3:1, 4:1) → **drug**-induced and/or **intrinsic AV** node **dysfunction** 
  - Clinical features → asymptomatic to palpitations ± manifestations of hemodynamic instability
  - EKG → "sawtooth" pattern of atrial activity (so called "flutter" waves) best seen in inferior leads (at 2:1 AV block one of the "flutter" waves is buried in the QRS complex making it difficult to differentiate AF from PSVT)
- \* Maneuvers that ↓ AV conduction (e.g. Valsalva, carotid massage) make the "flutter" waves more apparent → helpful in establishing the diagnosis



- Management (see atrial fibrillation):
  - 1. Hemodynamic **instability** → synchronized **cardioversion** (start at 50-100 J) followed by anticoagulation
  - 2. Hemodynamically stable  $\rightarrow$  rate control + anticoagulation:
    - β-blockers (especially in patients with CAD)
    - Ca-channel antagonists (avoid in patients with CHF)
    - **Digoxin** (drug of choice in patients with **mitral valve** disease and/or significant **CHF**)
  - 3. **Definite** therapy → radiofrequency/catheter ablation

## **APPROVED**

### Atrial Fibrillation (Afib)

By Zurab Azmaiparashvili at 2:44 am, Jan 24, 2009

- Most common arrhythmia, especially in the elderly
- Characterized by irregularly irregular rhythm
- Risk factors  $\rightarrow$  CAD, hypertension, COPD, PE, mitral valve disease, cardiomyopathies, pericarditis, atrial myxomas, alcohol abuse ("holiday heart"), sepsis

#### \* Lone Atrial Fibrillation → Afib without structural heart disease

- Clinical features → asymptomatic to **palpitations**, fatigue, **exacerbation** of **CHF** ± manifestations of **hemodynamic instability** (e.g. shortness of breath, hypotension, chest pain, confusion, syncope); possible manifestations of **systemic embolism** (e.g. ischemic stroke)
- Physical exam → irregularly irregular, frequently rapid pulse + absence of "a" waves
- EKG →
  - 1. No discernible P waves
  - 2. **Wavy**, undulating **baseline** ("fibrillatory" or "F" waves)
  - 3. Irregularly irregular RR intervals
  - 4. Narrow QRS complexes (unless with aberrant conduction)



- Management:
  - 1. Hemodynamic **instability** → synchronized **cardioversion** followed by **warfarin** anticoagulation
  - 2. Hemodynamically stable → rate control
    - β-blockers (especially in patients with CAD, hyperthyroidism and/or chronic CHF)
    - Ca-channel antagonists (avoid in patients with CHF)
    - **Digoxin** (drug of choice in patients with **mitral valve** disease and/or significant **CHF**)
  - 3. All patients with Afib (or AF) need warfarin anticoagulation (except those with lone Afib  $\rightarrow$  use aspirin) with the target INR of 2.0 3.0
  - 4. **Rhythm control** (medical or electrical cardioversion), if:
    - < 48 hours since onset
    - > 48 hours + TEE (transesophageal echocardiogram) shows no clot
    - $\geq$  3 weeks on anticoagulation
- \* Use amiodarone for medical cardioversion post-MI or if  $\downarrow$  EF; Use Class IC drugs (e.g. flecainide, propafenone) if normal EF
- \* Refractory Afib (symptomatic only)  $\rightarrow$  AV node ablation + permanent pacemaker

• Algorithm – Atrial Fibrillation

## **APPROVED**

By Zurab Azmaiparashvili at 2:44 am, Jan 24, 2009



### Premature Ventricular Contractions (PVCs)

- Usually **benign**; found in  $\sim 60\%$  of **adult males**
- $\uparrow$  incidence  $\rightarrow$  post-MI, CAD, electrolyte abnormalities, hyperthyroidism
- ↑ mortality if:
  - 1. **Frequent** (>10/hour)
  - 2. Complex (e.g. couplets)
  - 3. Polymorphic
  - 4. **Early** (PVC occurring during previous T wave)
- Early PVCs tend to degenerate into ventricular tachycardia and/or fibrillation
- Early PVCs more common in patients with long QT syndrome
- Clinical features → asymptomatic to palpitations
- EKG →
  - 1. Wide (>0.12s), bizarre QRS complexes
  - 2. No preceding P waves
  - 3. Followed by a **fully compensatory pause**



- Management:
  - 1. Asymptomatic + no cardiac disease → treatment not indicated
  - 2. Symptomatic + no cardiac disease  $\rightarrow \beta$ -blockers
  - 3. Cardiac disease  $\rightarrow \beta$ -blockers
  - 4. Frequent/complex PVCs  $\rightarrow$   $\beta$ -blockers
- \* **Bigeminy** → every sinus beat followed by a VPC
- \* Trigeminy  $\rightarrow$  every second sinus beat followed by a VPC
- \* Couplets → two consecutive VPCs
- \* Triplets/ventricular tachycardia  $\rightarrow$  three consecutive VPCs  $\pm$  rate > 100 bpm.

### Ventricular Tachycardia (VT)

## **APPROVED**

- Definition  $\rightarrow \ge 3$  consecutive PVCs at a rate > 100 bpm
- Risk factors → CAD, MI (most common), electrolyte abnormalities (e.g. hypokalemia, hypomagnesemia), drug-induced (e.g. digitalis toxicity), long QT syndrome, cardiomyopathies, mitral valve prolapse
- Significant if sustained (> 30 sec) or associated with ventricular fibrillation
- Clinical features:
  - 1. Non-sustained VT  $\rightarrow$  usually asymptomatic; possible palpitations
  - 2. Sustained  $VT \rightarrow$  manifestations of hemodynamic instability
- Physical exam → signs of AV dissociation (e.g. "cannon" a waves, variable intensity of S<sub>1</sub> sound)
- EKG:
  - 1. Monomorphic  $VT \rightarrow see PVCs$
  - 2. Polymorphic VT  $\rightarrow$  see Torsades de Pointes



- Management:
  - 1. Pulseless  $VT \rightarrow see \ ventricular \ fibrillation$
  - 2. Hemodynamic **instability** → synchronized **cardioversion** (100J → 200J → 300J → 360J)
  - 3. Hemodynamically **stable** → IV **amiodarone** (drug of choice) or IV **lidocaine** (amiodarone not effective/not available)
  - 4. **Definite** therapy in sudden death survivors → ICD placement
  - 5. Consider **chronic** therapy with  $\beta$ -blockers

## Torsades de Pointes (Polymorphic VT)

## **APPROVED**

By Zurab Azmaiparashvili at 2:44 am, Jan 24, 2009

- Risk factors:
  - 1. Congenital long QT syndromes → Romano-Ward syndrome (isolated long QT interval), Jervell and Lange-Nielsen syndrome (long QT + hearing loss)
  - 2. **Drug**-induced **long QT** syndrome → **Class IA** or **III** anti-arrhythmics (e.g. quinidine, procainamide, sotalol), **phenothiazine** antipsychotics, **TCAs**
  - 3. Electrolyte disturbances → hypomagnesemia, hypokalemia
  - 4. **Post-MI** bradycardia
- Clinical features → recurrent episodes of dizziness/syncope; sudden auditory stimuli may precipitate *torsades de pointes* in some forms of congenital long QT syndrome
- EKG  $\rightarrow$  waxing and waning amplitude of the QRS complexes ("twisting of the points")



- Management:
  - 1. Hemodynamic instability → cardioversion
  - 2. **Treatment**/correction of any **underlying** abnormality
  - 3. Consider → magnesium supplementation, isoproterenol infusion and/or overdrive pacing
  - 4. Congenital long QT syndrome  $\rightarrow$   $\beta$ -blockers (even if asymptomatic)

### Ventricular Fibrillation (VF)

- Most common cause of sudden death
- Risk factors → CAD, MI, electrolyte disturbances, hypothermia, drug toxicity
- Clinical features → syncope + no pulses (virtually dead)
- EKG  $\rightarrow$  oscillation from baseline with no discernible waves



• Management → immediate asynchronized cardioversion (see algorithm)

### • Algorithm – VF/Pulseless VT



### Wolff-Parkinson-White Syndrome (WPW syndrome)

- Secondary to the presence of an **accessory pathway** (Bundle of Kent) **connecting** the **atria** and the **ventricles** (bypassing the normal conduction system)
- Clinical features  $\rightarrow$  asymptomatic to palpitations (due to tachycardia)
- Complications → PSVT and Afib; ↑ risk of sudden death in symptomatic patients
- EKG →
  - 1. **Short PR** interval (<0.12 s)
  - 2. Delta wave
  - 3. Wide QRS complex
  - 4. **Normal PJ** interval
  - 5. Rate > 100 bpm

## **APPROVED**

By Zurab Azmaiparashvili at 2:44 am, Jan 24, 2009



\* Note  $\rightarrow$  in **WPW** syndrome **EKG** becomes **uninterpretable** for the presence of **ischemia/MI** and/or ventricular **hypertrophy** 

- Management → radiofrequency/catheter ablation of the accessory pathway (only after electrophysiologic demonstration of cause-effect relationship):
  - 1. Afib + hemodynamic instability  $\rightarrow$  synchronized cardioversion
  - 2. Afib + hemodynamically stable  $\rightarrow$  procainamide (1<sup>st</sup> choice) and/or amiodarone
  - 3. **Avoid drugs**/maneuvers that ↓ **AV conduction** (e.g. digoxin, β-blockers, Cachannel antagonists, adenosine, carotid massage) → may **precipitate** hemodynamic **instability** secondary to ↑ **ventricular rate**/VF

### Lown-Ganong-Levine Syndrome

- Aberrant pathway that joins the His-Purkinje system
- **Pre-excitation** syndrome (similar to WPW)
- EKG characteristics →
  - 1. **Short PR** interval
  - 2. **No** delta wave
  - 3. Narrow QRS complex
  - 4. **Short PJ** interval

### Pulseless Electrical Activity (PEA)

## **APPROVED**

By Zurab Azmaiparashvili at 2:44 am, Jan 24, 2009

- Synonyms → electromechanical dissociation
- Loss of peripheral pulse in the presence of significant EKG activity
- Etiology (should **guide therapy** when known):
  - 1. Tension pneumothorax
  - 2. Cardiac tamponade
  - 3. Massive PE
  - 4. Extensive MI
  - 5. **6Hs**  $\rightarrow$  hypoxia, hypovolemia, hyper-/hypokalemia, hypothermia,  $\uparrow$  hydrogen ions
  - 6. **Drug-**induced (e.g. TCA toxicity)
- Only EKG can differentiate between PEA, ventricular asystole and VF/Pulseless VT
- Management  $\rightarrow$  etiology-dependent; if unknown  $\rightarrow$  see algorithm
- Algorithm PEA/Asystole



### Ventricular Asystole (see algorithm)

- Consider transcutaneous pacing if very slow bradycardia
- EKG → .nearly flat line



## Anti-Arrhythmic Medications, Classification

### **APPROVED**

By Zurab Azmaiparashvili at 2:44 am, Jan 24, 2009

- Class I Blockade of Na Channels:
  - 1. **Class IA** ↑ AP duration (quinidine, procainamide, disopyramide)
  - 2. **Class IB** \( AP duration (*lidocaine*, *phenytoin*, *mexiletine*, *tocainide*)
  - 3. Class IC no change in AP duration (*flecainide*, *encainide*, *propafenone*)
- Class II Blockade of  $\beta$ -adrenergic receptors (see anti-anginal medications)
- Class III Blockade of K Channels (amiodarone, sotalol, bretylium, dofetilide)
- Class IV Blockade of Ca Channels (see anti-anginal medications)

### Anti-Arrhythmic Medications, Selected Examples

#### • Quinidine →

- 1. Class IA medication
- 2. Side effects: **GI distress**, immune-mediated **thrombocytopenia**, **cinchonism** (dizziness, **tinnitus**, hearing loss), **hypotension**, hypoglycemia, ↑ **QT** interval ± torsades de pointes and/or **syncope**
- 3. Important drug interactions: ↑ digoxin toxicity

#### Procainamide →

- 1. Class IA medication
- 2. Side effects: \(\frac{\text{ANAs} \pm \text{lupus}\)-like syndrome, GI distress, \(\frac{\text{QT}}{\text{ interval} \pm \text{torsades de pointes}\) and/or syncope, hypersensitivity reactions (e.g. fever, rash, agranulocytosis), hallucinations

#### Disopyramide →

- 1. Class IA medication
- 2. Side effects: \(\gamma\) anti-cholinergic activity (e.g. blurred vision, constipation, dry mouth, urinary retention), CHF, severe hypotension

#### Lidocaine →

- 1. Class IB medication
- 2. Side effects: CNS toxicity (e.g. confusion, tremor, seizures, drowsiness, coma) ± cardiovascular toxicity (e.g. hypotension, bradycardia, asystole)

#### Amiodarone →

- 1. Class III medication (also Class IA, II and IV)
- 2. Side effects: **photosensitivity**, blue-gray discoloration of the skin, **corneal deposits** ± blue halos, **hypo-/hyperthyroidism**, **pulmonary fibrosis** (interstitial lung disease), ↑ **LFTs** ± hepatic necrosis, **neuropathy** (e.g. paresthesias, ataxia, tremor), ↑ **QT** interval (**no** *torsades de pointes*)
- 3. Important drug interactions: \( \) digoxin and warfarin toxicity

#### Adenosine →

- 1. Unclassified
- 2. Side effects: **flushing**, chest **tightness**, **dyspnea**, **diaphoresis**, apprehension, metallic taste, paresthesias, possible asystole

## Infections of the Heart

## **APPROVED**

By Zurab Azmaiparashvili at 2:44 am, Jan 24, 2009

Infective Endocarditis (IE)

- Infection of the **endocardium** characterized by formation of **friable vegetations** (fibrin + platelets + bacteria) ± **valvular destruction**
- Most commonly affected valve  $\rightarrow$  mitral (followed by a ortic valve; Left > Right)
- **Most commonly** affected valve in **IV drug users** → **tricuspid** (followed by pulmonary valve; **Right** > Left)
- Risk factors  $\rightarrow$  IV drug use, indwelling catheters (e.g. pulmonary artery catheters, central venous catheters, hyper-alimentation catheters)

| High Risk                      | Intermediate Risk           | Low Risk (No Risk)          |
|--------------------------------|-----------------------------|-----------------------------|
| <b>Prosthetic</b> heart valves | Acquired valvular           | Isolated secundum ASD       |
| Previous IE                    | dysfunction (e.g. rheumatic | Surgical repair of ASD, VSD |
| Surgically constructed         | fever)                      | or PDA (> 6 months)         |
| systemic and/or pulmonary      | Most cases of congenital    | CABG                        |
| shunts/conduits                | heart disease               | MVP without regurgitation   |
| Complex cyanotic congenital    | HCM                         | Innocent heart murmur       |
| heart disease                  | MVP with regurgitation      | Rheumatic fever without     |
|                                | and/or thick leaflets       | valvular dysfunction        |
|                                |                             | Cardiac pacemakers          |
|                                |                             | ICD                         |

- Most common etiology:
  - 1. Previously damaged, native valves → Streptococcus *viridans*
  - 2. Prosthetic valves < 2 months  $\rightarrow$  Staphylococcus *epidermidis*
  - 3. Prosthetic valves > 2 months → Streptococcus viridans
  - 4. IV drug users → Staphylococcus *aureus*

| Acute bacterial endocarditis   | Subacute bacterial endocarditis                           |
|--------------------------------|-----------------------------------------------------------|
| Previously normal valves       | Previously <b>damaged</b> and/or <b>prosthetic</b> valves |
| S. aureus                      | S. viridans                                               |
| IV drug users                  |                                                           |
| Large vegetations              | Small vegetations                                         |
| Rapid onset and progression    | Less fulminant course                                     |
| Right > Left (tricuspid valve) | Left > Right (mitral valve)                               |
| Pulmonary septic emboli        | Systemic septic emboli                                    |

<sup>\*</sup> IE secondary to S. *bovis*  $\rightarrow$  order **colonoscopy** (to rule out associated colon cancer)

- \* Culture-negative IE and/or FUO (fever of unknown origin) → consider HACEK organisms (Haemophilus, Actinobacillus, Cardiobacterium, Eikenella and Kingella)
- \* Fungal endocarditis (e.g. Candida albicans) → IV drug users, indwelling catheters
- \* Gram-negative (e.g. Pseudomonal) endocarditis → IV drug users

- Clinical features:
  - 1. Constitutional symptoms → fever/chills, fatigue, malaise, anorexia, weight loss
  - 2. **New** and/or **changing** heart **murmur** (**regurgitation** murmur)
  - 3. Manifestations of CHF (e.g. dyspnea on exertion, orthopnea)
  - 4. **Peripheral manifestations** of IE (secondary to **vasculitis**):
    - **Petechiae** (conjunctive and/or oral mucosa)
    - Splinter hemorrhages (liner hemorrhages affecting the proximal nail bed)
    - Osler's nodes (small painful nodules on the finger pads)
    - **Roth spots** (white/pale retinal lesions surrounded by hemorrhage)
  - 5. **Peripheral manifestations** of IE (secondary to **embolism**):
    - Janeway lesions (red, painless lesions on the palms and soles)
  - 6. Manifestations of **systemic** septic **embolism** (with left-sided lesions) → **CNS** (e.g. stroke), **renal** (e.g. hematuria, flank pain), **splenic** (e.g. LUQ pain), **coronary** (e.g. acute MI), **mesenteric** (e.g. abdominal pain, lower GI bleed)
  - 7. Manifestations of **pulmonary** septic **embolism** (with right-sided lesions) → **chest pain, cough** ± hemoptysis
  - 8. Possible splenomegaly

#### \* IV drug abuser + acute onset of fever/chills ± heart murmur = IE

- Complications (other than listed above) → aneurysm formation (e.g. mycotic aneurysms), immune-mediated glomerulonephritis, abscess formation with associated conduction abnormalities
- Most common cause of mortality → CHF
- Lab findings  $\rightarrow$  anemia, leukocytosis,  $\uparrow$  ESR,  $\pm$  RF positivity,  $\pm$  active renal sediment
- Chest X-ray  $\rightarrow$  multiple **nodules**  $\pm$  **cavitation** (in cases of pulmonary septic embolism)
- Best initial diagnostic test → trans-thoracic echocardiography (TTE)
- Most accurate diagnostic test(s)  $\rightarrow$  blood culture ( $\geq$  3 samples in 24 hours) and/or trans-esophageal echocardiography (TEE)
- Duke diagnostic criteria:

| Major Criteria | Bacteremia with typical organisms (≥ 2             |
|----------------|----------------------------------------------------|
|                | positive blood cultures)                           |
|                | Echocardiographic evidence of IE (e.g.             |
|                | vegetations, new regurgitation, abscess)           |
| Minor Criteria | Risk factors for IE                                |
|                | Temperature > 38 C                                 |
|                | Vascular phenomena (embolism, mycotic              |
|                | aneurysms, Janeway lesions, hemorrhages)           |
|                | Immunologic phenomena (glomerulonephritis,         |
|                | Osler nodes, Roth spots, ↑ RF)                     |
|                | Echocardiographic findings consistent with         |
|                | IE but do not meet a major criterion               |
|                | Microbiologic evidence not meeting a major         |
|                | <b>criterion</b> (e.g. one positive blood culture) |
| Diagnosis      | 2 major criteria or                                |
|                | 1 major + 3 minor criteria $or$                    |
|                | 5 minor criteria                                   |

## **APPROVED**

- Empiric antibiotic therapy (until culture results become available) → vancomycin + gentamicin
- Pathogen-specific antibiotic therapy:

| Pathogen/Situation            | Regimen                           | Duration  |
|-------------------------------|-----------------------------------|-----------|
| Penicillin-Sensitive          | Penicillin G or Ceftriaxone       | 4 weeks   |
| Streptococci + native valve   | Or                                |           |
| endocarditis                  | Penicillin G or Ceftriaxone +     | 2 weeks   |
|                               | Gentamicin                        |           |
| As above + penicillin-allergy | Vancomycin                        | 4 weeks   |
| Penicillin-Resistant          | Penicillin G + Gentamicin (for    | 4 weeks   |
| Streptococci + native valve   | 2 weeks)                          |           |
| endocarditis                  |                                   |           |
| As above + penicillin-allergy | Vancomycin                        | 4 weeks   |
| Enterococcal endocarditis     | Penicillin G or Ampicillin +      | 4-6 weeks |
|                               | Gentamicin                        |           |
| As above + penicillin allergy | Vancomycin + Gentamicin           | 4-6 weeks |
| Methicillin-Sensitive         | Oxacillin (or nafcillin, etc.) or | 4-6 weeks |
| Staphylococcus + native valve | Cefazolin + Gentamicin (for       |           |
| endocarditis                  | 3-5 days)                         |           |
| As above + penicillin-allergy | Vancomycin + Gentamicin           | 4-6 weeks |
|                               | (for 3-5 days)                    |           |
| Methicillin-Resistant         | Vancomycin + Gentamicin           | 4-6 weeks |
| Staphylococcus + native valve | (for 3-5 days)                    |           |
| endocarditis                  |                                   |           |
| Methicillin-Sensitive         | Oxacillin (or nafcillin, etc.) +  | ≥ 6 weeks |
| Staphylococcus + prosthetic   | Gentamicin (for 2 weeks)+         |           |
| valve endocarditis            | Rifampin                          |           |
| Methicillin-Resistant         | Vancomycin + Gentamicin           | ≥ 6 weeks |
| Staphylococcus + prosthetic   | (for 2 weeks) + Rifampin          |           |
| valve endocarditis            |                                   |           |
| HACEK endocarditis            | Ceftriaxone                       | 4 weeks   |
|                               | Or                                |           |
|                               | Ampicillin + Gentamicin           | 4 weeks   |

### • Indications for surgical intervention:

- 1. Acute AR with early S<sub>1</sub>
- 2. Acute AR or MR with CHF, NYHA III-IV
- 3. Refractory CHF
- 4. Fungal endocarditis
- 5. **Recurrent** systemic **emboli**
- 6. **Prosthetic** valve **dysfunction**

### **APPROVED**

- 7. Early (< 2 months) prosthetic valve endocarditis
- 8. Evidence of **ring abscess** formation
- 9. Evidence of aneurysm formation
- 10. **Persistent infection** after **7-10 days** of appropriate antibiotic therapy
- 11. Recurrent infection
- 12. Large (>10 mm), mobile vegetations
- 13. **Gram-negative** (or antibiotic-resistant) endocarditis + valve dysfunction

### **APPROVED**

By Zurab Azmaiparashvili at 2:45 am, Jan 24, 2009

- IE **prophylaxis** (only if both present):
  - 1. **High-risk** cardiac conditions (see above)
  - 2. Procedures associated with transient bacteremia:
    - **Dental** procedures that involve **manipulation** of the **gingival tissue** and/or **perforation** of the **oral mucosa** (**does not include** anesthetic injections, placement/adjustment of orthodontic appliances, shedding of deciduous teeth and trauma to the lips and/or oral mucosa)
    - Invasive Respiratory tract procedures, such as tonsillectomy and/or adenoidectomy (does not include bronchoscopy, rigid or flexible)
    - Manipulations involving the infected skin and/or musculoskeletal tissue
- \* IE prophylaxis no longer recommended for GI and/or GU procedures
- \* IE prophylaxis no longer recommended for intermediate risk cardiac conditions
  - Antibiotic regimens for IE prophylaxis:

| Able to take oral medications   | Amoxicillin                                    |
|---------------------------------|------------------------------------------------|
| Unable to take oral medications | Ampicillin                                     |
|                                 | Or                                             |
|                                 | Cephalosporins (e.g. cefazolin, ceftriaxone)   |
| Penicillin allergy +            | Clindamycin                                    |
| Able to take oral medications   | Or                                             |
|                                 | Macrolides (e.g. azithromycin, clarithromycin) |
|                                 | Or                                             |
|                                 | Cephalosporins (e.g. cephalexin)               |
| Penicillin allergy +            | Clindamycin                                    |
| Unable to take oral medications | Or                                             |
|                                 | Cephalosporins (e.g. cefazolin, ceftriaxone)   |

### Acute Rheumatic Fever (ARF)

- Immunologic **complication** of **Streptococcal pharyngitis** (note: ARF does not follow impetigo and/or other streptococcal skin infections)
- Children of **school age** (5-15 years of age)
- Incubation period  $\rightarrow$  2-3 weeks
- Clinical features:
  - 1. Migratory Polyarthritis:
    - Most common manifestation
    - Usually effects the ankles, knees, elbows and wrists
    - Usually resolves within 2 weeks
    - No residual deformities
  - 2. Sydenham's Chorea (St. Vitus' dance)
  - 3. Carditis:
    - Murmurs of mitral and/or aortic regurgitation are the most common cardiac manifestations (secondary to endocarditis)
    - **Pericarditis** (see diseases of the pericardium)

- **Myocarditis** (see diseases of the myocardium)
- CHF
- Carditis is the most serious manifestation of ARF
- 4. Subcutaneous nodules:
  - Usually occur on the extensor surfaces of large joints
  - Usually painless and transient
- 5. Erythema marginatum:
  - Flat, non-scarring, painless rash
  - Transitory, sometimes lasting less than 1 day
- 6. Other manifestations include:
  - abdominal pain and anorexia
  - malaise, lethargy, fatigue
  - fever

### **APPROVED**

- Diagnosis (Jones Criteria):
  - 1. 2 major criteria plus evidence of streptococcal infection or
  - 2. 1 major and 2 minor criteria plus evidence of streptococcal infection
  - 3. Evidence of Infection:
    - Positive throat culture
    - Rising Antistreptolysin-O (ASO) titer

| Major Criteria       | Minor Criteria        |
|----------------------|-----------------------|
| Carditis             | Arthralgias           |
| Polyarthritis        | Fever                 |
| Chorea               | Elevated ESR          |
| Erythema marginatum  | Prolonged PR interval |
| Subcutaneous nodules |                       |

- Management →
  - 1. Aspirin and/or other NSAIDs for arthritis and/or carditis
  - 2. 1 dose of IM benzathrine Penicillin G (acceptable alternative → 10-day course of oral Penicillin V)
  - 3. Penicillin allergy → Erythromycin or other macrolides
  - 4. Severe and/or refractory carditis → Steroids
- Secondary prevention → benzathrine Penicillin G q3-4 weeks for ≥ 10 years and/or until age 40 (alternatives → daily oral penicillin or erythromycin in penicillin-allergic patients)

## Tumors of the Heart

### Cardiac Myxomas

- Most common primary cardiac tumor
- Females > Males
- Almost always benign
- Usually **single** (~95% of cases)
- Most common location  $\rightarrow$  left atrium (~85% of cases), followed by right atrium
- Gross appearance → gelatinous, friable, pedunculated mass attached to the interatrial septum
- Clinical features:
  - 1. **Obstruction** to **blood flow** → symptoms/signs of **mitral stenosis** (e.g. dyspnea, orthopnea, hemoptysis, pulmonary edema, dizziness/syncope, diastolic rumble, loud S<sub>1</sub>) that **changes with body position** ± **early diastolic** sound "**tumor plop**"
  - 2. Systemic embolization  $\rightarrow$  CNS and extremities being most common
  - 3. **Systemic** manifestations (secondary to ↑ IL-6 production) → fever, weight loss, fatigue, arthralgias, Raynaud phenomenon
- Lab findings  $\rightarrow \uparrow$  ESR,  $\uparrow$  WBC count,  $\downarrow$  Hb, hypergammaglobulinemia
- Best initial diagnostic test → trans-thoracic echocardiography
- Management → surgical removal
- \* Cardiac Rhabdomyoma > most common primary cardiac tumor in infants and/or young children; associated with tuberous sclerosis; spontaneous regression common
- \* Cardiac **metastases**  $\rightarrow$  **most common** cardiac neoplasm (far exceeding primary tumors); **pericardium** most commonly involved; **lymphomas**/leukemias, **breast** and **lung** carcinomas, malignant **melanomas**

### **APPROVED**

## Congestive Heart Failure (CHF)

### Definition

 Syndrome characterized by inadequate cardiac output necessary to meet the metabolic demands of the body, manifested as end-organ hypoperfusion and/or vascular congestion

### Classification

- Acute (see acute heart failure) vs. Chronic
- Systolic vs. Diastolic (see Table 1)
- **Left-**sided vs. **Right-**sided (see Table 2)
- Low-output vs. High-output (see Table 3)
- **Forward** vs. **Backward** (hypoperfusion vs. congestion)
- **NYHA** classification (see Table 4)
- ACC/AHA classification (see Table 5)
- \* Note  $\rightarrow$  Most cases of CHF are of mixed type (e.g. biventricular, both systolic and diastolic, both forward and backward)

| Table 1                                |                                                       |  |
|----------------------------------------|-------------------------------------------------------|--|
| Systolic Heart Failure                 | Diastolic Heart Failure                               |  |
| ↓ ventricular contractility            | <b>↓ compliance</b> and/or <b>impaired relaxation</b> |  |
| ↓ <b>EF</b>                            | $\leftrightarrow$ EF                                  |  |
| S <sub>3</sub> sound                   | S4 sound                                              |  |
| ↑ heart size                           | ↔ heart size                                          |  |
| Etiology → MI/ischemic cardiomyopathy, | Etiology → acute ischemia, hypertension,              |  |
| valvular heart disease, DCM            | HCM, RCM, AS                                          |  |

| Table 2                                             |                                                         |  |
|-----------------------------------------------------|---------------------------------------------------------|--|
| Left-Sided Heart Failure                            | Right-Sided Heart Failure                               |  |
| Etiology → IHD, valvular heart disease,             | Etiology → <b>left</b> -sided <b>CHF</b> (most common), |  |
| hypertension, cardiomyopathies, etc.                | COPD, pulmonary hypertension, restrictive               |  |
|                                                     | lung disease, massive PE                                |  |
| Manifestations of <b>pulmonary congestion</b> (e.g. | Manifestations of <b>systemic congestion</b> (e.g.      |  |
| pulmonary edema)                                    | peripheral edema, hepatic congestion)                   |  |

| Table 3                                            |                                            |
|----------------------------------------------------|--------------------------------------------|
| Low-Output Heart Failure High-Output Heart Failure |                                            |
| Disorders leading to ventricular dysfunction       | Severe anemia, "wet beriberi" (vitamin B1/ |
| (systolic and/or diastolic)                        | thiamine deficiency), AVMs, AV fistulas,   |
|                                                    | hyperthyroidism, Paget's disease of bone   |

## APPROVED

| Table 4                                                           |                                                                     |
|-------------------------------------------------------------------|---------------------------------------------------------------------|
| NYHA (New-York Heart Association) Classification of Heart Failure |                                                                     |
| NYHA Class 1                                                      | No limitation of physical activity                                  |
| NYHA Class 2                                                      | Comfortable at rest + mild limitation of physical activity          |
| NYHA Class 3                                                      | Comfortable at rest + <b>marked limitation</b> of physical activity |
| NYHA Class 4                                                      | Uncomfortable at rest + marked limitation of physical activity      |

| Table 5                                                             |                                                                             |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| ACC/AHA (American College of Cardiology/American Heart Association) |                                                                             |  |
| Classification of Heart Failure                                     |                                                                             |  |
| Stage A                                                             | Patients at <b>high risk</b> for developing CHF in the future but <b>no</b> |  |
|                                                                     | functional or structural heart disorder                                     |  |
| Stage B                                                             | Structural heart disorder but no symptoms of CHF                            |  |
| Stage C                                                             | Structural heart disorder with current and/or prior symptoms                |  |
|                                                                     | of CHF                                                                      |  |
| Stage D                                                             | Refractory CHF despite medical therapy                                      |  |

## Compensation/Pathophysiology

## **APPROVED**

By Zurab Azmaiparashvili at 2:45 am, Jan 24, 2009

| Compensatory Mechanism    | Pros                        | Cons                            |
|---------------------------|-----------------------------|---------------------------------|
| Renin-Angiotensin-        | ↑BP                         | Volume overload (congestion)    |
| <b>Aldosterone</b> System | ↑ SV & CO (↑ preload)       | ↑ peripheral resistance         |
| Activation                |                             | Cardiac Remodeling              |
| Sympathetic Nervous       | ↑BP                         | ↑ peripheral resistance         |
| System Activation         | ↑ HR                        | ↑ O2 demand                     |
| 3                         | ↑ SV & CO (↑ contractility) | Cardiac Remodeling              |
| Frank-Starling mechanism  | ↑ SV & CO (↑ preload)       | ↑ filling pressure (congestion) |
| Ventricular Hypertrophy   | ↑ SV & CO (↑ contractility) | ↑ O2 demand                     |

 $\ensuremath{\mathsf{BP}}-\ensuremath{\mathsf{blood}}$  pressure,  $\ensuremath{\mathsf{SV}}-\ensuremath{\mathsf{stroke}}$  volume,  $\ensuremath{\mathsf{CO}}-\ensuremath{\mathsf{cardiac}}$  output,  $\ensuremath{\mathsf{HR}}-\ensuremath{\mathsf{heart}}$  rate

## Etiology

- CAD (most common; ~ 70% of cases)
- Hypertension
- Valvular Heart Disease
- Cardiomyopathies/myocarditis
- Pericardial Disease (e.g. constrictive pericarditis)
- Idiopathic

### **Precipitating Factors**

- Usually reversible
- Sudden decompensation (e.g. 1<sup>st</sup> episode of CHF and/or clinical deterioration)
- Important to differentiate from disease progression
- Routine **tests** to order → **Chest X-ray** and **EKG** ± cardiac **enzymes** (to rule out pneumonia, arrhythmias and/or ischemia/infarction)
- Common precipitants include:
  - 1. **Life-style** changes, e.g. ↑ **salt** intake, ↑ **fluid** intake, excessive **alcohol** consumption (most common)
  - 2. **Non-compliance** with treatment
  - 3. Uncontrolled hypertension
  - 4. Ischemia/infarction
  - 5. Infections, especially pneumonia
  - 6. Arrhythmias, especially Afib
  - 7. Anemia
  - 8. Hyperthyroidism
  - 9. Other → PE, renal failure, sleep apnea, NSAIDs

### Clinical Features

## **APPROVED**

By Zurab Azmaiparashvili at 2:45 am, Jan 24, 2009

- Symptoms →
  - 1. **Dyspnea** on exertion, **orthopnea**, **paroxysmal nocturnal dyspnea**, chronic/**nocturnal cough** ± wheezing, **nocturia**
  - 2. Fatigue, weakness
  - 3. **RUQ** discomfort/pain  $\pm$  nausea
- Signs  $\rightarrow$ 
  - 1. ↑HR
  - 2. **Bilateral** pulmonary **rales** (especially **basal**), ± **dullness** to percussion, **displaced** apical impulse, S<sub>3</sub> (**most reliable** sign of CHF) and/or S<sub>4</sub> sound
  - 3. Peripheral edema, JVD, hepatomegaly ± hepatojugular reflux, ascites

### Diagnosis

- Chest X-ray → pulmonary congestion (e.g. Kerley B lines, cephalization of pulmonary vessels, interstitial edema), ± pleural/pericardial effusion, ± cardiomegaly
- EKG  $\rightarrow$  possible ischemic changes and/or Afib  $\pm$  ventricular hypertrophy
- Best initial diagnostic test → echocardiography
- Most accurate diagnostic test (for EF estimation) → MUGA scan

<sup>\*</sup> Order BNP (brain natriuretic peptide) to differentiate between CHF ( $\uparrow$  levels) and dyspnea of pulmonary origin ( $\leftrightarrow$  levels)

### Management

| ACC/AHA Stage A | <b>Life-style</b> modification (e.g. ↓ alcohol intake, smoking cessation)                                        |
|-----------------|------------------------------------------------------------------------------------------------------------------|
|                 | Correction of any underlying abnormalities (e.g. hypertension,                                                   |
|                 | hyperlipidemia, hyperglycemia) $\pm$ <b>ACE</b> inhibitors for <b>DM</b>                                         |
| ACC/AHA Stage B | As for <b>Stage A</b> + <b>ACE inhibitors</b> $\pm$ <b><math>\beta</math>-blockers</b> (in appropriate patients) |
| ACC/AHA Stage C | As for Stage B + salt restriction, diuretics $\pm$ aldosterone antagonists                                       |
| _               | (e.g. spironolactone), <b>inotropic</b> agents (e.g. digoxin), <b>vasodilators</b> (e.g.                         |
|                 | hydralazine, nitrates) and/or <b>ICD</b> placement (e.g. EF < 30%)                                               |
| ACC/AHA Stage D | As for stage C + heart transplantation, chronic inotropic and/or                                                 |
| _               | mechanical support; consider experimental therapies                                                              |

• Indications for ACE inhibitor therapy:

## **APPROVED**

By Zurab Azmaiparashvili at 2:45 am, Jan 24, 2009

1. **Symptomatic** CHF

2. Asymptomatic CHF + DM

- 3. Asymptomatic CHF + EF < 35-40%
- 4. Post-MI (especially anterior MI) if EF < 40% and/or manifestations of CHF
- Manifestations (clinical and/or radiographic) of systemic and/or pulmonary congestion
   → add diuretics
- **Do not** use  $\beta$ -blockers in  $\rightarrow$  decompensated CHF (first stabilize with ACE inhibitors and diuretics) and/or NYHA Class IV CHF
- Symptomatic despite standard therapy (ACE inhibitors + diuretics  $\pm \beta$ -blockers)  $\rightarrow$  add spironolactone (especially beneficial in NYHA class III and IV patients)
- Intolerance to ACE inhibitors (e.g. chronic cough) → ARBs
- Intolerance and/or contraindications to ACE inhibitors and/or ARBs → hydralazine + high-dose nitrates (especially beneficial in African-American patients)
- CHF + Afib  $\rightarrow$  start digoxin (although  $\beta$ -blockers can also be used)
- **Diastolic** dysfunction  $\rightarrow$   $\beta$ -blockers and/or Ca-channel antagonists (e.g. verapamil, diltiazem)  $\pm$  diuretics
- Severely symptomatic despite all available therapy → 48-hour infusion of inotropic agents (e.g. dobutamine, milrinone); may ↑ mortality
- \* Drug that have shown to \( \precedef \) mortality in CHF:
  - 1. ACE inhibitors
  - 2. β-blockers (only carvedilol, metoprolol and bisoprolol)
  - 3. Aldosterone antagonists
  - 4. ARBs
  - 5. Combination of hydralazine and nitrates

### Acute Cardiogenic Pulmonary Edema

- Sudden increase in LV filling pressure → pulmonary venous congestion → acute pulmonary edema → possible respiratory failure
- Common precipitants → extensive MI, severe arrhythmias
- Clinical features → tachypnea, dyspnea, cough ± hemoptysis, tachycardia, diaphoresis, pulmonary rales ± wheezing
- Chest X-ray  $\rightarrow$  evidence of pulmonary **congestion** (e.g. prominent vascular markings)
- Best initial step in patient management → EKG to rule out associated ischemia/infarction and/or serious arrhythmias
- Best initial therapy  $\rightarrow$  100% oxygen (remember the ABCs)
- Best next step  $\rightarrow$  furosemide + morphine + nitroglycerin (avoid if BP < 90 mmHg)
- See algorithm



### Digoxin and other cardiac glycosides

- Mechanism of Action: **Inhibition** of **Na/K** –**ATPase** → ↑ intracellular Na → ↓ activity of Na-Ca exchanger → ↑ intracellular Ca → ↑ **contractility**
- Other actions → parasympathetic nervous system activation
- Clinical Uses → CHF, Afib and/or AF
- Factors that **increase** digoxin **toxicity**  $\pm$  levels:
  - 1. hypokalemia
  - 2. hypercalcemia
  - 3. hypomagnesemia
  - 4. **renal** insufficiency
  - 5. ↑ age
  - 6. thiazide and/or loop diuretics (hypokalemia)
  - 7. **spironolactone** (↓ renal excretion)
  - 8. **quinidine** (↓ renal excretion)
  - 9. **verapamil** (↓ renal excretion)
  - 10. **amiodarone** (multiple effects, including ↓ renal excretion, ↓ protein binding)

**APPROVED** 

- 11. **NSAIDs** (e.g. indomethacin)
- 12. **erythromycin** ( $\downarrow$  intestinal flora  $\rightarrow \downarrow$  intestinal metabolism)
- Factors that **decrease** digoxin **toxicity** ± levels:
  - 1. hyperkalemia
  - 2. **antacids** (↓ bioavailability)
  - 3. **cholestyramine** and other bile-acid binding resins (\pm\$ enterohepatic circulation)
- Side effects:
  - 1. **GI distress** → anorexia, nausea, vomiting, diarrhea
  - 2. Visual disturbances → yellow-green halos, blurry vision
  - 3. CNS effects  $\rightarrow$  confusion, drowsiness, dizziness  $\pm$  psychosis/delirium
  - 4. **Arrhythmias** → virtually any type of brady- and/or tachyarrhythmia; "PAT with block" (pathognomic for digoxin toxicity)
  - 5. Hyperkalemia
  - 6. Gynecomastia
- Management of digoxin toxicity:
  - 1. Supportive measures
  - 2. Correction of electrolyte abnormalities
  - 3. Ventricular arrhythmias → lidocaine and/or phenytoin
  - 4. Supraventricular arrhythmias  $\rightarrow \beta$ -blockers
  - 5. **Indications** for **Digibind** (digoxin-fab fragments) administration:
    - Hemodynamic instability
    - Hyperkalemia
    - Altered LOC
    - Accidental/intentional overdose (>10 mg)

## Hypertension (HTN)

### Definition/Classification

- Systolic BP  $\geq$  140 mmHg and/or diastolic BP  $\geq$  90 mmHg measured on  $\geq$  2 occasions
- Divided into essential/primary (90-95% of cases) and secondary forms of disease

| Stage                | Systolic BP    | Diastolic BP |
|----------------------|----------------|--------------|
| Normal               | < 120 mmHg     | < 80 mmHg    |
| Pre-hypertension     | 120 – 139 mmHg | 80 – 89 mmHg |
| Stage 1 hypertension | 140 – 159 mmHg | 90 – 99 mmHg |
| Stage 2 hypertension | ≥ 160 mmHg     | ≥ 100 mmHg   |

### Essential (Primary) Hypertension

## **APPROVED**

By Zurab Azmaiparashvili at 2:45 am, Jan 24, 2009

- Most common form of HTN
- No identifiable causative factors
- Risk factors → ↑ age, male gender, African-American race, family history of HTN, obesity/sedentary lifestyle, ↑ sodium diet, excessive alcohol intake, metabolic syndrome, pre-hypertension
- Clinical features → usually **asymptomatic**; possible manifestations of **end-organ damage** and/or **hypertensive emergency** (see below)

| Target Organ  | Manifestations                                       |  |
|---------------|------------------------------------------------------|--|
| Heart         | LV hypertrophy (e.g. S4 sound, ↑ intensity of        |  |
|               | A <sub>2</sub> , prominent apical impulse)           |  |
|               | CHF (e.g. S <sub>3</sub> sound, peripheral/pulmonary |  |
|               | congestion)                                          |  |
|               | CAD (e.g. angina, MI)                                |  |
| Blood vessels | Peripheral Artery Disease (e.g. intermittent         |  |
|               | claudication, ↓ pulses)                              |  |
|               | Aortic dissection                                    |  |
|               | Aortic aneurysms                                     |  |
| Brain         | TIAs/stroke                                          |  |
|               | Dementia                                             |  |
| Kidneys       | Chronic renal failure                                |  |
|               | Proteinuria, hematuria                               |  |
| Eyes          | Hypertensive <b>retinopathy</b> (see below)          |  |

• Diagnosis  $\rightarrow$  see definition

- \* Keith-Wagener-Barker classification of hypertensive retinopathy:
  - 1. Grade 1 arteriolar **narrowing**
  - 2. Grade 2 arteriovenous **nicking**, "**copper-wiring**"
  - 3. Grade 3 flame-shaped hemorrhages, "cotton-wool" spots, hard exudates
  - 4. Grade 4 as above + papilledema

- \* "White-Coat" hypertension  $\rightarrow$  HTN when measured in the clinic/office plus no evidence of end-organ damage; confirmation  $\rightarrow$  normal BP when self-measured at home
- \* "Masked" hypertension  $\rightarrow$  HTN when measure outside the clinic/office  $\pm$  evidence of end-organ damage; confirmation → 24h ambulatory BP monitoring
- \* "Pseudo-hypertension"  $\rightarrow$  HTN when measured by the cuff method secondary to stiffness of the vascular tree plus no evidence of end-organ damage; confirmation  $\rightarrow$ intra-arterial BP measurement
  - Follow-up:
    - 1. Normal BP  $\rightarrow \sim 2$  years
    - 2. Pre-hypertension  $\rightarrow \sim 1$  year
    - 3. Stage 1 HTN  $\rightarrow$   $\leq$  2 months
    - 4. Stage 2 HTN  $\rightarrow$   $\leq$  1 month
    - 5. Stage 3 HTN (BP > 180/110 mmHg)  $\rightarrow$   $\leq$  1 week and/or immediate treatment
- \* **Routine evaluation** (to rule out complications and/or secondary HTN):
  - 1. CBC
  - 2. Urinalysis
  - 3. Serum creatinine/BUN
  - 4. Serum electrolytes
  - 5. Blood glucose
  - 6. Lipid profile
  - 7. EKG

## **APPROVED**

- Findings suggestive of essential HTN >
  - 1. **Age 30-50**
  - 2. Family history of HTN
  - 3. Mild HTN
  - 4. Easily controlled HTN
  - 5. **No evidence** of end-organ damage
  - 6. **Normal** lab findings
- BP goal in uncomplicated HTN  $\rightarrow$  < 140/90 mmHg
- BP goal in HTN + DM, kidney disease, CAD (or CAD-equivalents)  $\rightarrow$  < 130/80 mmHg
- BP goal in HTN + CAD +  $\downarrow$  EF  $\rightarrow$  < 120/80 mmHg
- Management:

| 8                                           |                                                             |
|---------------------------------------------|-------------------------------------------------------------|
| Pre-hypertension                            | Life-style modification                                     |
| Stage 1 hypertension                        | <b>Life-style</b> modification for ~ 1 year                 |
| Stage 1 hypertension + risk factors for CAD | <b>Life-style</b> modification for $\sim$ <b>3-6 months</b> |
| Stage 1 hypertension + DM, end-organ        | Life-style modification + pharmacological                   |
| damage and/or cardiovascular disease        | mono-therapy                                                |
| Stage 2 hypertension                        | Life-style modification + pharmacological                   |
|                                             | combination therapy                                         |

- **Life-style** modification:
  - DASH (dietary approaches to stop hypertension) eating plan → diet rich in potassium (fresh fruits & vegetables) and calcium (low-fat dairy products); reduced amount of fats
  - 2. Sodium restriction
  - 3. Regular exercise
  - 4. Weight loss ( $\sim 0.5$ -2.0 mmHg drop in BP for every kg weight loss)
  - 5.  $\downarrow$  alcohol consumption
- **Drug of choice** for **uncomplicated** HTN in the **absence** of **specific indications** (*see below*) → **thiazide** diuretics (e.g. hydrochlorothiazide)
- HTN **not controlled** with **mono-therapy** → two-drug **combinations** (add diuretics, if not already in use)
- Specific indications:

| DM ± proteinuria                          | ACE inhibitors                              |  |
|-------------------------------------------|---------------------------------------------|--|
| CHF                                       | ACE inhibitors, diuretics and/or β-blockers |  |
| CAD                                       | β-blockers, ACE inhibitors                  |  |
| GFR < 30 mL/min                           | Loop-diuretics                              |  |
| Supraventricular arrhythmias              | β-blockers, Ca-channel antagonists          |  |
| Raynaud phenomenon                        | Ca-channel antagonists                      |  |
| Peripheral artery disease                 | Ca-channel antagonists                      |  |
| Osteoporosis                              | Thiazide diuretics                          |  |
| <b>BPH</b> (benign prostatic hypertrophy) | α1-antagonists                              |  |
| Migraine                                  | β-blockers, Ca-channel antagonists          |  |
| Recurrent nephrolithiasis                 | Thiazide diuretics                          |  |
| Isolated systolic HTN                     | Thiazide diuretics                          |  |
| Pregnancy                                 | α-methyldopa, hydralazine, labetalol, Ca-   |  |
|                                           | channel antagonists                         |  |
| Hyperlipidemia                            | α1-antagonists                              |  |
| Elderly, African-Americans                | Thiazide diuretics, Ca-channel antagonists  |  |

## **Hypertensive Crises**

## **APPROVED**

- Hypertensive **urgency**  $\rightarrow \uparrow \uparrow$  **BP** (**diastolic BP**  $\geq$  **130** mmHg) **without** evidence of endorgan damage
- Hypertensive emergency → ↑↑ BP plus acute, progressive end-organ damage; examples include malignant HTN, ACS, aortic dissection, encephalopathy, acute pulmonary edema and/or acute renal failure
- Malignant HTN  $\rightarrow \uparrow \uparrow$  BP *plus* encephalopathy, progressive renal failure and papilledema
- Accelerated HTN  $\rightarrow \uparrow \uparrow$  BP plus retinal hemorrhages/exudates but no papilledema
- Risk factors  $\rightarrow$  untreated HTN, sudden discontinuation of anti-hypertensive therapy (especially clonidine and/or  $\beta$ -blockers), scleroderma, renovascular disease
- Clinical features → hypertensive encephalopathy (headache, confusion, focal neurologic signs, seizures, papilledema, visual loss, stupor, coma), nausea/vomiting, oliguria/anuria ± hematuria, chest pain, dyspnea, acute pulmonary edema
- Diagnostic evaluation (in addition to focused history, physical and fundoscopic examinations) → hemoglobin/blood smear (look for schistocytes), urinalysis, creatinine/BUN, serum electrolytes, blood glucose, chest X-ray, EKG, ± head CT

- Management → Parenteral **therapy** (see below)
- Goal diastolic BP → ~ 100-110 mmHg within 1-2 hours (~ 20-25% decrease in mean BP); further reduction may lead to → cerebral/myocardial ischemia, mesenteric ischemia
- \* Note → hypertensive urgency does not require hospitalization and/or parenteral therapy

| Medication    | Most Useful                                                                   | Best avoided                          |
|---------------|-------------------------------------------------------------------------------|---------------------------------------|
| Nitroprusside |                                                                               | ↑ ICP                                 |
| Labetalol     | Aortic dissection Pregnancy                                                   | Acute heart failure                   |
| Nitroglycerin | Acute heart failure<br>ACS                                                    |                                       |
| Nicardipine   |                                                                               | Acute heart failure                   |
| Enalaprilat   | Acute heart failure                                                           | Pregnancy                             |
| Phentolamine  | ↑ catecholamines (e.g. pheochromocytoma, clonidine withdrawal, cocaine abuse) |                                       |
| Hydralazine   | Pregnancy                                                                     | Aortic dissection Myocardial ischemia |
| Esmolol       | Aortic dissection<br>Myocardial ischemia                                      | Acute heart failure                   |
| Fenoldopam    | ↓ renal function                                                              |                                       |

Selected Causes of Secondary Hypertension

## **APPROVED**

By Zurab Azmaiparashvili at 2:46 am, Jan 24, 2009

### Renovascular Hypertension (Renal Artery Stenosis)

- Most common cause of curable secondary HTN
- Secondary to:
  - 1. fibromuscular dysplasia  $\rightarrow$  females > males; age < 30
  - 2. atherosclerosis  $\rightarrow$  age > 50
- Usually unilateral (bilateral disease suggested by sudden ↓ in renal function with the introduction of ACE inhibitors and/or ARBs)
- Clues:
  - 1. new-onset HTN before age < 30 or after age > 50
  - 2. sudden worsening of essential HTN
  - 3. severe HTN + severe peripheral artery disease
  - 4. **severe** HTN + severe hypertensive **retinopathy**
  - 5. **disparity** in renal **size**/function
- Key features → upper abdominal bruit; refractory HTN
- Best initial diagnostic tests → renal artery duplex ultrasonography, MRA or CT angiography
- Most accurate diagnostic test → renal angiography

<sup>\*</sup> Other diagnostic tests to consider  $\rightarrow$  captopril renal scan (positive result  $\rightarrow$  decreased radionuclide uptake after captopril administration) and renal vein renin studies (lateralization of renin levels)

- Best initial therapy  $\rightarrow$  percutaneous transluminal angioplasty  $\pm$  stenting
- No response to angioplasty → surgical intervention
- No response to either intervention → medical management (consider ACE inhibitors and/or ARBs for unilateral disease)

### Coarctation of the Aorta

- Males > Females
- Common associations  $\rightarrow$  Turner syndrome, bicuspid aortic valve
- Key features → headache/nosebleeds + cold feet/claudication, ↑ BP in the upper extremities with \u03c4/unobtainable BP in the lower extremities; \u03c4 femoral pulses, visible chest wall/neck pulsations, murmurs heard over the chest and back
- Chest X-ray → rib notching, figure "3" appearance of the aorta
- Best initial diagnostic test → echocardiography
- Most accurate diagnostic test → angiography
- Management  $\rightarrow$  angioplasty  $\pm$  stenting (treatment of choice) or surgical intervention

## **APPROVED**

### Other Causes of Secondary HTN

By Zurab Azmaiparashvili at 2:46 am, Jan 24, 2009

- Pheochromocytoma (see Endocrinology)
- Primary hyperaldosteronism (see Endocrinology)
- Cushing's syndrome (see Endocrinology)
- Hyperthyroidism (see Endocrinology)
- Acromegaly (see Endocrinology)
- Hyperparathyroidism (see Endocrinology)
- Congenital adrenal hyperplasia (see Endocrinology)
- Renal parenchymal disease → most common form of secondary HTN, treat with salt restriction, diuretics (usually loop diuretics) ± ACE inhibitors (if proteinuria)
- OCPs → discontinue OCP use and/or switch to progestin-only contraception

### Drugs that Interfere with the Treatment of HTN

- OCPs
- NSAIDs
- Excessive alcohol
- OTC allergy and/or cold medications

## **Anti-Hypertensive Medications**

#### **Diuretics**

## **APPROVED**

### Carbonic Anhydrase Inhibitors

By Zurab Azmaiparashvili at 2:46 am, Jan 24, 2009

- Agents: acetazolamide, dorzolamide
- Mechanism of Action: inhibition of carbonic anhydrase → ↑ NaHCO3 excretion
- Site of Action: **proximal** convoluted tubule
- Side Effects: sulfa allergy, hyperchloremic metabolic acidosis, hypokalemia, precipitation of kidney stones, paresthesias
- Relative Contraindications: ↓ liver function (secondary to ↑ NH3 absorption)

#### Thiazide Diuretics

- Agents: hydrochlorothiazide, indapamide (also a vasodilator), metolazone
- Mechanism of Action: inhibition of Na/Cl cotransporter
- Site of Action: distal convoluted tubule
- Side Effects: hypokalemia, metabolic alkalosis, hyponatremia, hypercalcemia, hyperglycemia, hyperuricemia, hyperlipidemia, sulfa allergy
- Relative Contraindications: DM, gout, dyslipidemia

### **Loop Diuretics**

- Agents: furosemide, ethacrynic acid, bumetanide, torsemide
- Mechanism of Action: inhibition of Na/K/2Cl cotransporter
- Site of Action: thick ascending limb of loop of Henle
- Side Effects: hypokalemia, metabolic alkalosis, dehydration, hypocalcemia, hypomagnesemia, hyperglycemia, hyperuricemia, hyperlipidemia, sulfa allergy, ototoxicity
- Relative Contraindications: **DM**, **gout**, **dyslipidemia**

### **K-sparing Diuretics**

- Agents: spironolactone, triamterene, amiloride
- Mechanism of Action: aldosterone antagonism (spironolactone), Na channel blockade (triamterene, amiloride)
- Site of Action: **collecting** tubules/ducts
- Side Effects: **hyperkalemia**, metabolic **acidosis**, **gynecomastia** (spironolactone), **nephrolithiasis** (triamterene)

#### Osmotic Diuretics

- Agents: mannitol
- Mechanism of Action: ↑ urine osmolarity → ↑ urine flow rate
- Site of Action: **proximal** convoluted tubule
- Side Effects: GI distress, dehydration, pulmonary edema, hypo-/hypernatremia
- Relative Contraindications: CHF

## Sympathoplegics

## Centrally-Acting α-2 Receptor Agonists

| Medication            | Major Side Effects     | Other uses        |
|-----------------------|------------------------|-------------------|
| α-methyldopa          | Sedation               |                   |
|                       | Dry mouth              |                   |
|                       | Depression             |                   |
|                       | Sexual dysfunction     |                   |
|                       | <b>Positive Coombs</b> |                   |
|                       | test/hemolytic anemia  |                   |
|                       | Hepatitis              |                   |
|                       | Lupus-like syndrome    |                   |
| Clonidine (guanabenz, | Sedation               | Opiate withdrawal |
| guanfacine)           | Dry mouth              |                   |
|                       | Depression             |                   |
|                       | Sexual dysfunction     |                   |
|                       | Rebound hypertension   |                   |

Miscellaneous Agents

APPROVED

By Zurab Azmaiparashvili at 2:46 am, Jan 24, 2009

| Medication    | Mechanism of Action                | Major Side Effects      |
|---------------|------------------------------------|-------------------------|
| Trimethaphan  | Blockade of autonomic              | Blurry vision           |
| Hexamethonium | ganglia                            | Constipation            |
|               |                                    | Urinary retention       |
|               |                                    | Sexual dysfunction      |
|               |                                    | Orthostatic hypotension |
| Reserpine     | <b>Depletion</b> of norepinephrine | Depression              |
| -             | <b>stores</b> from nerve terminals | GI distress             |
| Guanethidine  | Blockade of norepinephrine         | Orthostatic hypotension |
|               | release from nerve terminals       | Sexual dysfunction      |

### $\alpha$ -1 receptor antagonists

- Agents: prazosin, terazosin, doxazosin, tamsulosin
- Major Side Effects: 1<sup>st</sup>-dose hypotension/syncope, worsening of urinary incontinence
- Other Uses: **BPH**, acute treatment of **renal colic**

β-blockers (see anti-anginal medications)

### **Vasodilators**

## **APPROVED**

### Hydralazine

By Zurab Azmaiparashvili at 2:46 am, Jan 24, 2009

- Mechanism of Action: **NO** release
- Site of Action: arterioles
- Major Side Effects: **lupus-**like syndrome, **marked compensatory** responses (fluid retention, reflex tachycardia)

#### Minoxidil

- Mechanism of Action: opening of K channels
- Site of Action: arterioles
- Major Side Effects: hirsutism, pericardial effusion, marked compensatory responses
- Other Uses: **alopecia** (topically)

#### Diazoxide

- Mechanism of Action: opening of K channels
- Site of Action: arterioles
- Major Side Effects: **hyperglycemia** (↓ insulin secretion), **marked compensatory** responses
- Other Uses: insulinomas

## Nitroprusside

- Mechanism of Action: ↑ activity of guanylyl cyclase → NO release
- Site of Action: venules, arterioles
- Major Side Effects: **methemoglobinemia** (antidote: **methylene blue**), **cyanide** toxicity (antidotes: **amyl nitrite**, sodium **nitrite** and sodium **thiosulfate**), **thiocyanide** toxicity (in patients with  $\downarrow$  **renal function**)

Ca-channel Antagonists (see anti-anginal medications)

#### **ACE Inhibitors**

- Agents: captopril. enalaprili, lisinopril, etc.
- Mechanism of Action: ↓ activity of **angiotensin-converting enzyme** → ↓ production of **angiotensin II** and ↓ degradation of **bradykinin**
- Major Side Effects: chronic **cough**, angioedema, **hyperkalemia**, **renal** impairment (especially in patients with **renovascular hypertension**), **neutropenia**, **rash** (especially with **captopril**), **taste** disturbances (especially with **captopril**)
- Absolute Contraindications: **bilateral renal artery stenosis, pregnancy (renal** malformations, fetal **hypotension**, etc.)

### Angiotensin-Receptor Blockers (ARBs)

- Agents: losartan, valsartan, irbesartan, etc.
- Similar to **ACE inhibitors**, but:
  - 1. **no effect** on **bradykinin** metabolism, hence
  - 2.  $\downarrow$  incidence of dry cough
- Major Use: intolerance to ACE inhibitors, secondary to chronic cough

## Diseases of the Aorta

## **APPROVED**

By Zurab Azmaiparashvili at 2:46 am, Jan 24, 2009

#### **Aortic Dissection**

- **Tear** of the **intimal layer** of the aorta with **secondary dissection** into the **media** (less frequently, medial hemorrhage with secondary intimal disruption)
- Stanford classification:
  - 1. Type  $A \rightarrow$  involving the ascending aorta (proximal dissection)
  - 2. Type  $B \rightarrow limited$  to the descending aorta (distal dissection)
- DeBakev classification:
  - 1. Type  $I \rightarrow$  involving both the ascending and the descending aorta
  - 2. Type II  $\rightarrow$  limited to the ascending aorta
  - 3. Type III → limited to the descending aorta
- Risk factors:
  - 1. **Hypertension** (most common underlying abnormality)
  - 2. **Cystic medial necrosis,** secondary to **connective tissue** disorders (e.g. **Marfan** syndrome, **Ehlers-Danlos** syndrome)
  - 3. Coarctation of the aorta
  - 4. **Bicuspid** aortic valve
  - 5. Pregnancy
- Clinical features:
  - 1. Sudden onset of severe, "tearing", "ripping" chest pain, often involving the interscapular region
  - 2. Significant **BP difference** between the **right** and the **left arms**
  - 3. Left-sided pleural effusion
  - 4. Acute AR  $\rightarrow$  acute onset of CHF, new-onset diastolic murmur, early S<sub>1</sub> sound
  - 5. Cardiac tamponade

- 6. Acute MI
- 7. **Stroke** (e.g. hemiplegia)
- 8. **Spinal cord** ischemia (e.g. paraplegia)
- 9. **Mesenteric** ischemia
- 10. Compression of adjacent structures → dyspnea (trachea), dysphagia (esophagus), hoarseness (recurrent laryngeal nerve), SVC syndrome (superior vena cava), Horner's syndrome (superior cervical ganglia)
- EKG → helpful in **ruling out** acute **MI** (unless aortic dissection involves the coronary ostia)
- Chest X-ray → widening of the mediastinum, left-sided pleural effusion, blunting of the aortic knob, "calcium" or "ring" sign, tracheal deviation
- **Best initial** diagnostic test → chest **CT scan** with **I/V contrast** (some test Qs may offer **trans-esophageal echocardiography** as an alternative, especially in **hemodynamically unstable** patients)
- **Most accurate** diagnostic test → **angiography** (e.g. when chest X-ray shows wide mediastinum and CT scan is non-diagnostic)
- \* Although MRA can also be used as an initial diagnostic test, it's not uniformly available, requires more time and costs more
  - Management:
    - 1.  $\beta$ -blockers (even in patients with normal BP)  $\rightarrow \downarrow$  dissection propagation
    - 2. Add **nitroprusside** for **optimal BP control** (consider **labetalol** as a valuable alternative)
    - 3. Goal HR  $\rightarrow$  60-80 bpm
    - 4. Goal systolic BP  $\rightarrow \leq 120 \text{ mmHg}$
    - 5. Surgical intervention  $\rightarrow$ 
      - All Type A dissections (emergently)
      - Complicated Type B dissections (e.g. rupture, propagation, vascular compromise)
      - **Dissections** in patients with **Marfan** syndrome
- \* Note  $\rightarrow$  direct vasodilators (without the prior use of  $\beta$ -blockers) are contraindicated in a ortic dissection ( $\uparrow$  risk of propagation)

## **APPROVED**

By Zurab Azmaiparashvili at 2:46 am, Jan 24, 2009

# **INFORMATION ONLY**

